Implementing an expression in Matlab's Symbolic Math Toolbox
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Good day,
At the moment I have got equations which look like:
A = ....- q1^2*q1c*q3c + q1*q3*q1c^2 - q1*q3*q2c^2 - q1*q3*q3c^2 + q1*q3*q4c^2 - 2*q1*q4*q1c*q2c - 2*q1*q4*q3c*q4c - q2^2*q1c*q3c + q2^2*q2c*q4c + 2*q2*q3*q1c*q2c + 2*q2*q3*q3c*q4c + q2*q4*q1c^2 - q2*q4*q2c^2 - q2*q4*q3c^2 + q2*q4*q4c^2 + q3^2*q1c*q3c - q3^2*q2c*q4c + q4^2*q1c*q3c - q4^2*q2c*q4c))/((q1*q1c + q2*q2c + q3*q3c + q4*q4c)*(q1^2 + q2^2 + q3^2 + q4^2)*(q1c^2 + q2c^2 + q3c^2 + q4c^2))
Now I know that:
q1c^2+q2c^2+q3c^2+q4c^2 = 1
q1^2+q2^2+q3^2+q4^2 = 1
I like to introduce this information such that I can work with more simplified expressions, because the ones I work with at the moment are very large.
Any ideas how I can achieve this?
2 Kommentare
Walter Roberson
am 20 Mai 2013
If q1c^2+q2c^2+q3c^3+q4c^4 = 1 then what would you like (q1^2 + q2^2 + q3^2 + q4^2) to be transformed to?
Will the expression q1c^2+q2c^2+q3c^3+q4c^4 appear specifically as a sub-expression, or do you need to (for example) have MuPAD detect that
5*q3c^4 + 5*q3*q2c^2 + 5*q4c^4*q3c + 5*q3c*q1^2
is
5*q3c*(q1c^2+q2c^2+q3c^3+q4c^4)
and so substitute
5*q3c*1
which is
5*q3c
?
Antworten (1)
Walter Roberson
am 20 Mai 2013
simplify(subs(A, {q4c^2, q4^2}, {1 - (q1c^2+q2c^2+q3c^2), 1 - (q1^2+q2^2+q3^2)}))
0 Kommentare
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!