Solve system of equations with the symbolic matrix
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Cengizhan Demirbas
 am 26 Feb. 2021
  
    
    
    
    
    Kommentiert: Cengizhan Demirbas
 am 26 Feb. 2021
            I have a 4x4 matrix T, and I know its last row to be [0 0 0 1]. I also know these equations:



After solving these by hand, I find that third column has no solution (except for [4,3], which i know to be 0).
My question is how can I keep these unsolved variables symbolic while solving the system? 
I tried the following code:
T = sym('x', [4 4]);
T(4,:) = [0 0 0 1];
T
p_new1 = [2 0 0 1].';
p_old1 = [0 0 0 1].';
p_new2 = [3 0 0 1].';
p_old2 = [1 0 0 1].';
p_new3 = [2 0 1 1].';
p_old3 = [0 1 0 1].';
eqn1 = p_new1 == T*p_old1;
eqn2 = p_new2 == T*p_old2;
eqn3 = p_new3 == T*p_old3;
sol = solve([eqn1, eqn2, eqn3])
This results in a strut with 9 elements that are solved. It completely excludes third column which i want to remain symbolic like x13 x23 x33. How can I do this?
0 Kommentare
Akzeptierte Antwort
  Walter Roberson
      
      
 am 26 Feb. 2021
        T = sym('x', [4 4]);
T(4,:) = [0 0 0 1];
T
p_new1 = [2 0 0 1].';
p_old1 = [0 0 0 1].';
p_new2 = [3 0 0 1].';
p_old2 = [1 0 0 1].';
p_new3 = [2 0 1 1].';
p_old3 = [0 1 0 1].';
eqn1 = p_new1 == T*p_old1;
eqn2 = p_new2 == T*p_old2;
eqn3 = p_new3 == T*p_old3;
s = solve([eqn1, eqn2, eqn3], reshape(T(1:3,[1:2,4]),1,[]))
subs(T,s)
3 Kommentare
  Walter Roberson
      
      
 am 26 Feb. 2021
				T = sym('x', [4 4]);
T(4,:) = [0 0 0 1];
T
p_new1 = [2 0 0 1].';
p_old1 = [0 0 0 1].';
p_new2 = [3 0 0 1].';
p_old2 = [1 0 0 1].';
p_new3 = [2 0 1 1].';
p_old3 = [0 1 0 1].';
eqn1 = p_new1 == T*p_old1;
eqn2 = p_new2 == T*p_old2;
eqn3 = p_new3 == T*p_old3;
M = [eqn1, eqn2, eqn3]
s = solve(M)
subs(T,s)
You can see here that I didn't have to do anything special -- solve() automatically worked it out in terms of variables actually present, and subs() back into T is enough to get nice matrix form.
But if you want more certainty:
vars = symvar(M);
[A,b] = equationsToMatrix(M, vars)
vars(:) == A\b
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!









