Taylor Series Approximation for e^-x
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
I'm trying to write a taylor series code for e^-x without using the taylor function in matlab.  Each time I run the code I end up with an empty variable for my answer and I dont know whats wrong.  Please help!
Here is my code:
syms ff(x)
normTrueError = TaylorSeries(0.25, 1, 1)
function [ans] = ff(x)
    ans = exp(-x);
end
function [normTrueError] = TaylorSeries(xi, xiplus1, n)
    h = (xiplus1 - xi);
    fXiplus1 = ff(xi);
    for i = 1:n
        fXiplus1 = fXiplus1 + (diff(ff(xi), i)/factorial(i))*h^i;
    end
    trueValue = ff(xiplus1);
    normTrueError = fXiplus1 - trueValue;
end
2 Kommentare
  James Tursa
      
      
 am 19 Feb. 2021
				What is the point of the syms ff(x)?  Aren't you just trying to calculate a numeric Taylor series approximation and compare it to the MATLAB exp( ) function?  What is the actual wording of your assignment?
Antworten (2)
  David Hill
      
      
 am 19 Feb. 2021
        
      Bearbeitet: David Hill
      
      
 am 19 Feb. 2021
  
      function x=TaylExp(x)
  x=sum((-x).^(0:18)./factorial(0:18));
end
  dasari
 am 4 Sep. 2022
        syms ff(x)
normTrueError = TaylorSeries(0.25, 1, 1)
function [ans] = ff(x)
    ans = exp(-x);
end
function [normTrueError] = TaylorSeries(xi, xiplus1, n)
    h = (xiplus1 - xi);
    fXiplus1 = ff(xi);
    for i = 1:n
        fXiplus1 = fXiplus1 + (diff(ff(xi), i)/factorial(i))*h^i;
    end
    trueValue = ff(xiplus1);
    normTrueError = fXiplus1 - trueValue;
end
1 Kommentar
  Walter Roberson
      
      
 am 4 Sep. 2022
				syms ff(x)
That does not tell matlab to make the local function ff take symbolic inputs and return a symbolic result! When the local function ff is invoked, the exp() in it will return a result that is the same datatype as the input passed to it. Your function is passing xi to it but xi is numeric 0.25. exp(-0.25) is going to be a numeric result and you would then be taking numeric diff() of the scalar results, which is going to return [] because numeric diff() has to do with the difference between adjacent elements.
Your code is using diff() to take derivatives. You need to pass symbolic x to ff(), take the derivative of the result, and subs() xi for x in the result.
Siehe auch
Kategorien
				Mehr zu Calculus finden Sie in Help Center und File Exchange
			
	Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




