How to add intgeral action to Full state feedback control with two inputs two ouputs system
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to add integral action to Full state feedback control with two inputs and two outputs system. The system is fourth-order.
0 Kommentare
Antworten (1)
Pavl M.
am 4 Dez. 2024
Bearbeitet: Pavl M.
am 5 Dez. 2024
Good and valued: Solution ver. 1,
clc
clear all
close all
%% consider a 2 input, 2 output system,
nstates = 4;
ninputs = 2;
noutputs = 2;
A1=[0 0 -178 178;0 0 590 -500;-256 256 0 0; 0 -1 0 0.0000666];
B1=[8 -5;48 -63;-0.01 2.5; 0 0];
C1=[1 0 0 0;0 0 0 1];
D1=[0 0; 0 0];
Ts = 10e-3; % Sampling time in s
% Aa=[0 0 -178 178;0 0 590 -500;-256 256 0 0; 0 -1 0 0.0000666];
% Ba=[8 -5;48 -63;-0.01 2.5; 0 0];
% Ca=[1 0 0 0;0 0 0 1];
% Da = [0 0; 0 0];
% % you can use 'rss' and 'ssdata' to get random A, B, C, D matrices
% sys = rss(2,2,2) % to generate a random 2x2 system
% [A,B,C,D] = ssdata(sys); % to provide A, B, C, D matrices for this system
[num1 den1] = ss2tf(A1,B1,C1,D1,1) % iu = 1
[num2 den2] = ss2tf(A1,B1,C1,D1,2); % iu = 2
%First input to first output only:
sys1 = tf(num1(1,:),den1) %contin
%Second input to second output only:
sys2 = tf(num2(2,:),den2); %contin
%First input to second output only:
sys3 = tf(num1(2,:),den1); %continuous
%Second input to first output only:
sys4 = tf(num2(1,:),den2); %continuous
[A, B, C, D] = tf2ss(num1(1,:),den1)
asys = ss(A,B,C,D)
opt2 = c2dOptions('Method','tustin','ThiranOrder',4,'DelayModeling','state');
%dsys=c2d(asys,Ts,opt2)
% observer model
%poles_obsv = exp(Ts*[-700 -310 -100 -90]);
poles_obsv = [-700 -310 -100 -90];
L=place(asys.a',asys.c',poles_obsv);
L=L';
Ah = asys.A;
bh = [asys.B L];
%cTh = eye(nstates);
%dh = [0 0;0 0;0 0;0 0];
%asysh=ss(Ah,bh,cTh,dh);
%figure
%step(asysh)
%add a state variable for the integral of the output error. This has the effect of adding an integral term to our controller which is known to reduce steady-state error.
%model for integral action
Ai = [[asys.A zeros(nstates,1)];-asys.C 0];
bi = [asys.B;0];
br = [zeros(nstates,1);1];
ci = [asys.C 0];
di = [0];
asysi=ss(Ai,bi,ci,di);
%Other augmentation scheme:
% Plant augmentation
Aaug=[asys.A zeros(nstates,1); zeros(1,nstates+1)];
Aaug(nstates+1,nstates)=1;
Baug=[asys.B;0];
Caug=eye(nstates+1);
Daug=zeros(nstates+1,1);
Plantcs=ss(Aaug,Baug,Caug,Daug);
% feedback controller
p1 = -800 + 800i;
p2 = -800 - 800i;
p3 = -400 - 400i;
%p1 = -110;
%p2 = -310;
%p3 = -500;
p4 = -400 + 400i;
p5 = -90;
%poles_k = exp(Ts*[p1 p2 p3 p4 p5]);
poles_k = [p1 p2 p3 p4 p5];
K = place(asysi.a,asysi.b,poles_k)
Ko = place(asys.A,asys.B,[p1 p2 p3 p4])
s4 = size(asys.A,1);
Z = [zeros([1,s4]) 1];
N = (1\([asys.A,asys.B;asys.C,asys.D]))*Z';
Nx = N(1:s4);
Nu = N(s4+1);
Nbar=Nu + Ko*Nx
%observer design:
At = [ asys.A-asys.B*Ko asys.B*Ko
zeros(size(asys.A)) asys.A-L*asys.C ];
Bt = [ asys.B*Nbar
zeros(size(asys.B)) ];
Ct = [ asys.C zeros(size(asys.C)) ];
%If you'd like to eliminate steady state error as much use Nbar:
% compute Nbar
%poles_k_d = exp(Ts.*poles_k)
%K_d = place(dsysi.a,dsysi.b,poles_k_d)
Ki=K(nstates+1);
K=K(1:nstates);
s4 = size(asys.A,1);
Z = [zeros([1,s4]) 1];
N = (1\([asys.A,asys.B;asys.C,asys.D]))*Z';
Nx = N(1:s4);
Nu = N(s4+1);
Nbarq=Nu + K*Nx
%Well performing (adjusted) system:
syso = ss(At,Bt,Ct,0);
isstable(syso)
syso2 = minreal(syso)
%isminphase(syso)
f = 3;
t = 0:Ts:f;
figure
step(syso2,[0 f])
title('Continuous With observer flat(cold) start')
sysod = c2d(syso2,Ts,opt2)
isstable(sysod)
u = 0.001*ones(size(t));
x0 = [0.01 0 0 0];
figure
lsim(sysod,zeros(size(t)),t,[x0]);
title('Discrete sampled with observer and conditions hot start')
xlabel('Time (sec)')
ylabel('Output')
res_agent = sysod;
figure
w = logspace(2,6,1000);
bode(res_agent,w),grid
figure
rlocus(res_agent)
figure
nyquist(res_agent)
ms = minreal(res_agent);
Gcc = ms;
zms = zero(ms) % closed-loop zeros
pms = pole(ms)
tsim = 1;
setpointamp = 1; %
setpointapptime = 0.001; %
defaultsetpointpos = 0; %
Conf = RespConfig(Bias=defaultsetpointpos,Amplitude=setpointamp,Delay=setpointapptime)
%figure
%step(Gcc,[0 tsim], Conf)
%title('Plant+Controller Closed Loop system step response')
[wngcc,zetagcc,pgcc] = damp(Gcc)
sigma(Gcc)
margin(Gcc)
diskmargin(Gcc)
stepinfo(Gcc)
disp('Whether the system is stable, minimum phase and proper:')
isstable(sysod)
isminphase(tfdata(tf(sysod),'v'))
isproper(sysod)
Qc= ctrb(A,B)
controllab = rank(Qc)
hasdelay(sysod)
%tdc3 = totaldelay(sysod)
%sysndc3 = absorbDelay(sysod)
isallpass(tfdata(tf(sysod),'v'))
%Less important:
%sys_cl = ss(Ai-bi*[K Ki],br,ci,di)
%[a,b] = ss2tf(sys_cl.A,sys_cl.B,sys_cl.C,sys_cl.D)
%[A,B,C,D] = tf2ss(Nbar*a,b)
%sys_cl = ss(A,B,C,D)
%figure
%step(sys_cl,t)
%discrete system
%hold on
%sys_cld = c2d(sys_cl,Ts)
%figure
%step(sys_cld)
%title('Discrete sampled System')
%In similar approach to continue for 1-2, 2-1, 2-2 SISO parts of the MIMO.
%Contact me more if you need more tailored, specific service, solution,
%product development.
%Constructed by
%https://independent.academia.edu/PMazniker
%+380990535261, https://join.skype.com/invite/oXnJhbgys7oW
%https://diag.net/u/u6r3ondjie0w0l8138bafm095b
%https://github.com/goodengineer
%https://orcid.org/0000-0001-8184-8166
%https://willwork781147312.wordpress.com/portfolio/cp/
%https://www.youtube.com/channel/UCC__7jMOAHak0MVkUFtmO-w
%https://nanohub.org/members/130066
%https://pangian.com/user/hiretoserve/
%https://substack.com/profile/191772642-paul-m
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classical Control Design finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!