custom regression(multiple output)
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, I am working on a custom regression neural network.
Inputs size=2 and Output size=6 // Number of Data =25001
However, after a certain iteration, it was confirmed that all Data(25001) outputs are the same.
x axis=Target // y axis=output
Initially, the output is different, but it seems that the output is the same after a while.
My code is here.
--------------------------------------------------------------------------------------------
clear,clc,close all
Data=readmatrix('sim_linear.xlsx');
Y_at=Data(:,2);
Y_ft=Data(:,3);
F_at=Data(:,4);
F_ft=Data(:,5);
P_cot=Data(:,6);
T_cot=Data(:,7);
T_bt=Data(:,8);
F_et=Data(:,9);
T_et=Data(:,10);
PW_t=Data(:,11);
idx=randperm(numel(Y_at));
Y_at=Y_at(idx);
Y_ft=Y_ft(idx);
F_at=F_at(idx);
F_ft=F_ft(idx);
P_cot=P_cot(idx);
T_cot=T_cot(idx);
T_bt=T_bt(idx);
F_et=F_et(idx);
T_et=T_et(idx);
PW_t=PW_t(idx);
Input=cat(2,Y_at,Y_ft);
Output=cat(2,F_ft,T_cot,T_bt,F_et,T_et,PW_t);
Inputs=transpose(Input);
Outputs=transpose(Output);
layers = [
featureInputLayer(2,'Name','in')
fullyConnectedLayer(64,'Name','fc1')
tanhLayer('Name','tanh1')
fullyConnectedLayer(32,'Name','fc2')
tanhLayer('Name','tanh2')
fullyConnectedLayer(16,'Name','fc3')
tanhLayer('Name','tanh3')
fullyConnectedLayer(8,'Name','fc4')
tanhLayer('Name','tanh4')
fullyConnectedLayer(6,'Name','fc5')
];
lgraph=layerGraph(layers);
dlnet=dlnetwork(lgraph);
iteration = 1;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.005;
gradDecay = 0.75;
sqGradDecay = 0.95;
output=[];
dlX = dlarray(Inputs,'CB');
for it=1:500
iteration = iteration + 1;
[out,loss,NNgrad]=dlfeval(@gradients,dlnet,dlX,Outputs);
[dlnet.Learnables,averageGrad,averageSqGrad] = adamupdate(dlnet.Learnables,NNgrad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
if mod(it,100)==0
disp(it);
end
end
function [out,loss,NNgrad,grad1,grad2]=gradients(dlnet,dlx,t)
out=forward(dlnet,dlx);
loss2=sum((out(1,:)-t(1,:)).^2)+sum((out(2,:)-t(2,:)).^2)+sum((out(3,:)-t(3,:)).^2)+sum((out(4,:)-t(4,:)).^2)+sum((out(5,:)-t(5,:)).^2)+sum((out(6,:)-t(6,:)).^2);
loss=loss2;
[NNgrad]=dlgradient(loss,dlnet.Learnables);
end
-------------------------------------------------------------------------------------------------------------------------------------------------
Thanks for reading my question. I hope that a great person can answer.
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!