Solving symbolic equation using solve
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Vithusha T
am 8 Feb. 2021
Kommentiert: Vithusha T
am 9 Feb. 2021
Hi,
I am trying to minimize the value of phi here. I want the values of E for which phi becomes zero but the code is not providing any solution, also there is some problem in the execution of solve function.
Can someone please help with the proper function to be used here for minimization.
b = [(5/60) (10/60) ];
syms E xfun Ifun phi phidiff
xfun = sym(zeros(10,2));
Ifun = sym(zeros(10,2));
phi = sym(zeros(10,2));
phidiff = sym(zeros(10,1));
E_Vyas = zeros(10,1);
for prog = 1:1:2
for conv = 1:1:10
xfun(conv,prog) = -(E)./(8.314.*T(conv,prog)); %here T is temperature file(10 by 2 matrix)
Ifun(conv,prog) = (T(conv,prog).*exp(xfun(conv,prog)))-(Eiget(-xfun(conv,prog))./8.314);
end
end
for conv = 1:1:10
phi(conv) = (Ifun(conv,1).*b(2))./(Ifun(conv,2).*b(1)) + (Ifun(conv,2).*b(1))./(Ifun(conv,1).*b(2));
phidiff = diff(phi,E);
E_Vyas(conv) = (real(solve(phidiff,E)))/1000;
conv;
show = E_Vyas(conv);
end
E_Vyas = smooth(E_Vyas,0.1,'loess');
function [Eix] = Eiget(xfun) %function for approximation for I(E,T)
A = log((0.56146./xfun)+0.65).*(1+xfun);
B = (xfun.^4).*(exp(7.7*xfun)).*((2+xfun).^3.7);
Eix= (((A.^-7.7)+B).^-0.13)-((exp(-xfun))./xfun);
end
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 9 Feb. 2021
b = [(5/60) (10/60) ];
syms E xfun Ifun phi phidiff
xfun = sym(zeros(10,2));
Ifun = sym(zeros(10,2));
phi = sym(zeros(10,1));
phidiff = sym(zeros(10,1));
E_Vyas = zeros(10,1);
for prog = 1:1:2
for conv = 1:1:10
xfun(conv,prog) = -(E)./(8.314.*T(conv,prog)); %here T is temperature file(10 by 2 matrix)
Ifun(conv,prog) = (T(conv,prog).*exp(xfun(conv,prog)))-(Eiget(-xfun(conv,prog))./8.314);
end
end
guess = sym('1.0');
for conv = 1:1:10
phi(conv) = (Ifun(conv,1).*b(2))./(Ifun(conv,2).*b(1)) + (Ifun(conv,2).*b(1))./(Ifun(conv,1).*b(2));
phidiff(conv) = diff(phi(conv),E);
tic
sol = vpasolve(phidiff(conv),E,guess);
toc
if isempty(sol)
E_Vyas(conv) = nan;
else
E_Vyas(conv) = real(sol)/1000;
guess = sol;
end
end
E_Vyas_smooth = smooth(E_Vyas,0.1,'loess');
function [Eix] = Eiget(xfun) %function for approximation for I(E,T)
A = log((0.56146./xfun)+0.65).*(1+xfun);
B = (xfun.^4).*(exp(7.7*xfun)).*((2+xfun).^3.7);
Eix= (((A.^-7.7)+B).^-0.13)-((exp(-xfun))./xfun);
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!