Matlab unable to find solution to cubic polynomial
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Aleem Andrew
am 1 Feb. 2021
Bearbeitet: James Tursa
am 1 Feb. 2021
The following cubic equation has three roots.
syms a
solve((1225*a)/2 - 6125 == ((2*a - 35)^2*(60*a + 4200))/840, a)
Matlab's output is:
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 1)
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 2)
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 3)
Can cubic equations like this be solved analytically in Matlab?
0 Kommentare
Akzeptierte Antwort
James Tursa
am 1 Feb. 2021
Bearbeitet: James Tursa
am 1 Feb. 2021
Tell the solve( ) function that the max degree of the polynomial is 3 to force explicit solutions for the result:
syms a
p = (1225*a)/2 - 6125 - ((2*a - 35)^2*(60*a + 4200))/840
solve(p,a,'MaxDegree',3)
which gives
ans =
28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) + ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3) - 35/3
- 28175/(36*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3)/2 - (3^(1/2)*(28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3))*1i)/2 - 35/3
- 28175/(36*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3)/2 + (3^(1/2)*(28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3))*1i)/2 - 35/3
Then you can also note
>> simplify(ans)
ans =
(35*2^(1/3)*(- 121 - 1077^(1/2)*3i)^(1/3))/6 + (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/6 - 35/3
- (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/12 - (35*2^(1/3)*(1 + 3^(1/2)*1i)*(- 121 - 1077^(1/2)*3i)^(1/3))/12 + (2^(1/3)*3^(1/2)*(- 121 + 1077^(1/2)*3i)^(1/3)*35i)/12 - 35/3
- (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/12 + (35*2^(1/3)*(- 1 + 3^(1/2)*1i)*(- 121 - 1077^(1/2)*3i)^(1/3))/12 - (2^(1/3)*3^(1/2)*(- 121 + 1077^(1/2)*3i)^(1/3)*35i)/12 - 35/3
>> imag(ans)
ans =
0
0
0
So you can pick off the real part for the answer.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!