Trouble finding solution of unknown variable in difficult integration problem
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Louis McDermott
am 30 Jan. 2021
Kommentiert: Louis McDermott
am 31 Jan. 2021
I am trying to solve for 'h' using the first equation above. My script produces a result, however it is unexpected. The solution of 'h' should increase with 's', yet this is not the case. I have attached the script below, any help would be much appreciated.
clc; clear all; close all;
%%%%%%%%%% Physical Parameters %%%%%%%%%%
r=0.1;
b=0.15;
W=60;
Kc=0.99*1000;
Kphi=1528.4*1000;
n=1.1;
c=1.04*1000;
phi=28;
A1=(Kc/b+Kphi);
k=0.6;
Beta=0.0872665;
kx=0.043*Beta+0.036;
%%%%%%%%%% Defining equations %%%%%%%%%%
s=1
syms h
syms Pheta
PhetaF=acos(1-h/r);
PhetaR=acos(1-k*h/r);
jx=r*(PhetaF-Pheta-(1-s)*(sin(PhetaF)-sin(Pheta)));
Sig=A1*r^n*(cos(Pheta)-cos(PhetaF));
Taux=(c+Sig*tand(phi))*(1-exp(-jx/kx));
%%%%%%%%%% Solving for h %%%%%%%%%%
fun=Taux*sin(Pheta)+Sig*cos(Pheta);
eqn=W==r*b*vpaintegral(fun,Pheta,[PhetaR,PhetaF]);
sol=vpasolve(eqn,h,.1)
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 30 Jan. 2021
I used a different approach - see below. I could only see an increase in h, with increasing s, as a step change around s = 4.5.
s = 1:0.1:10;
h0 = 0.1; % Use h0 = 0.15 to get a different set of results.
for i = 1:numel(s)
h(i) = fzero(@(h) Zfun(h,s(i)), h0);
end
plot(s,h,'o'),grid
xlabel('s'),ylabel('h')
legend(['initial guess h0 = ' num2str(h0)])
disp(h)
function Z = Zfun(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
W=60;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux = @(theta) (c + sig(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern = @(theta) taux(theta).*sin(theta) + sig(theta).*cos(theta);
Z = r*b*integral(kern,thetar,thetaf) - W;
end
This results in
5 Kommentare
Alan Stevens
am 31 Jan. 2021
Ok. Assuming you want the original values of h, then you can do the following:
s = 1:0.1:10;
h0 = 0.1; % Use h0 = 0.15 to get a different set of results.
for i = 1:numel(s)
h(i) = fzero(@(h) Zfun(h,s(i)), h0);
Fx(i) = integralfunction2(h(i),s(i));
end
plot(s,h,'o'),grid
xlabel('s'),ylabel('h')
legend(['initial guess h0 = ' num2str(h0)])
%disp(h)
figure
subplot(2,1,1)
plot(h,Fx,'o'),grid
xlabel('h'),ylabel('Fx')
subplot(2,1,2)
plot(s,Fx,'o'),grid
xlabel('s'),ylabel('Fx')
function Z = Zfun(h,s)
W=60;
Z = integralfunction(h,s) - W;
end
function Irb = integralfunction(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux = @(theta) (c + sig(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern = @(theta) taux(theta).*sin(theta) + sig(theta).*cos(theta);
Irb = r*b*integral(kern,thetar,thetaf);
end
function Irb2 = integralfunction2(h,s)
r=0.1;
n=1.1;
rn = r^n;
b=0.15;
Kc=0.99*1000;
Kphi=1528.4*1000;
k = 0.6;
c=1.04*1000;
tanphi=tand(28);
Beta=0.0872665;
kx=0.043*Beta+0.036;
sigA = (Kc/b+Kphi)*rn;
thetar = acos(1-k*h/r);
thetaf = acos(1-h/r);
sig1 = @(theta) sigA*(cos(theta) - cos(thetaf));
jx = @(theta) r*(thetaf - theta - (1-s)*(sin(thetaf) - sin(theta)));
taux1 = @(theta) (c + sig1(theta).*tanphi).*(1 - exp(-jx(theta)/kx));
kern1 = @(theta) taux1(theta).*cos(theta)-sig1(theta).*cos(theta);
Irb2 = r*b*integral(kern1,thetar,thetaf);
end
Weitere Antworten (1)
Alex Sha
am 30 Jan. 2021
Hi, there are two solutions as below:
1: h=0.073660616949704
2: h=0.165217787421255
2 Kommentare
Alex Sha
am 31 Jan. 2021
If give s form 1 to 4, there will be two set of solutions, however, both of them, 'h' will decrease with 's':
solution 1:
s h
1 0.073660616949704
1.5 0.0711236790825779
2 0.0690063620895268
2.5 0.0672422418190603
3 0.0657674528467493
3.5 0.0645275378178806
4 0.0634782731873953
Solution 2:
s h
1 0.165217787441994
1.5 0.156485557183266
2 0.14921049827769
2.5 0.143711115798623
3 0.139599112575786
3.5 0.136470016301514
4 0.134031387697928
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!