Multiple Parameters in fmincon
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a fairly simple model that looks as follows:

I have given data for my dependent variable (y) and two covariates ('cov1' and 'cov2'). My approach so far has been the following:
% Data
y = [20, 21, 24, 26, 27, 28, 32, 37, 38, 39, 40, 45, 43, 40, 38];
cov1 = [70, 71, 74, 78, 78, 81, 83, 84, 86, 89, 91, 91, 92, 96, 91];
cov2 = [101, 101, 104, 108, 108, 110, 111, 114, 115, 117, 117, 118, 117, 119, 120];
% initial values
param_init = [0, 0, 0];
% function
y_model = @(p) p(1) + p(2).*cov1 + p(3).*cov2;
objective = @(p) sqrt(mean((y - y_model(p)).^2));
% optimization
[param_opt, fval] = fmincon(objective, param_init)
My goal is to minimize the RMSE between the observed y and my y_model values. At the moment I have specified three parameters for this purpose.
However, it would be interesting to know how I can specify that β is a p x 1 vector without specifying two separate parameters in my function ? I am not sure if this will work though?
0 Kommentare
Antworten (1)
Matt J
am 19 Jan. 2021
Bearbeitet: Matt J
am 19 Jan. 2021
I'm not sure why you are using fmincon for something that has a simple, non-iterative solution:
C=[cov1(:).^0,cov1(:),cov2(:)];
beta = C \ y(:);
If you will eventually be adding in nonlinear (and possibly also linear) constraints, then you can set up fmincon as,
C=[cov1(:).^0,cov1(:),cov2(:)];
objective = @(p) norm(C*p(:)-y(:)).^2;
[beta_opt, fval] = fmincon(objective, beta_init,A,b,Aeq,beq,lb,ub,nonlcon);
Siehe auch
Kategorien
Mehr zu Linear Least Squares finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!