Solving equations using Laplace transform
24 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Aleem Andrew
am 14 Jan. 2021
Beantwortet: Logeshwari S
am 19 Nov. 2021
I am trying to solve an equation using the Laplace transform without having to find the Laplace transforms of the terms in the equation. Matlab is unable to find a solution based on the code below, although a solution can be found by writing the terms as a function of s. Could someone please suggest a method to do this?
syms y(t)
Dy2 = diff(y,t,2); Dy1 = diff(y,t,1);
eqn = laplace(Dy2+3*Dy1+2*y) == laplace(exp(-t))
cond = [y(0)==4, Dy(0)==5];
sol = dsolve(eqn,cond)
f
0 Kommentare
Akzeptierte Antwort
Star Strider
am 14 Jan. 2021
Unless you are solving a partial differential equation, such that the Laplace transform produces an ordinary differential equation in one of the two variables and a Laplace transform of ‘t’, dsolve is not appropriate. It is simply necessary to solve for (in this instance) ‘Y(s)’ and then invert it to get ‘y(t)’:
syms t y(t) Y(s) Dy0
Dy2 = diff(y,t,2);
Dy1 = diff(y,t,1);
eqn = laplace(Dy2+3*Dy1+2*y == exp(-t))
eqn = subs(eqn, {laplace(y(t), t, s), subs(diff(y(t), t), t, 0)},{Y(s), Dy0})
cond = [y(0)==4, Dy1(0)==5];
Soln_s = isolate(eqn, Y(s))
Soln_t = ilaplace(Soln_s)
Soln_t = subs(Soln_t, {ilaplace(Y(s), s, t)}, {y(t)})
Soln_t = simplify(Soln_t, 'Steps',500)
.
6 Kommentare
Weitere Antworten (1)
Logeshwari S
am 19 Nov. 2021
clear all clc syms x w f=input('Enter the function of x: '); F=laplace(f,x,w); disp('Laplace transform of f(t) = '); disp(F);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!