How to create State-space equation from complex symbolic equation?

3 Ansichten (letzte 30 Tage)
delil codes
delil codes am 14 Jan. 2021
Kommentiert: delil codes am 14 Jan. 2021
I generated a code for robotic dynamics with lagrange euler method. I generated for 4 dof. I want to set up the torque equations with state-space matrix definitions.
I found the thau torque for one joint like;
Izz1*dd_the1 + Iyy2*dd_the1*cos(the2)^2 + Iyy4*dd_the1*cos(the2)^2 + Izz3*dd_the1*cos(the2)^2 +
Ixx2*dd_the1*sin(the2)^2 + Iyy3*dd_the1*sin(the2)^2 + Izz4*dd_the1*sin(the2)^2 - (dd_the1*l2^2*m2
*cos(the2)^2)/4 - (dd_the1*l4^2*m4*cos(the2)^2)/4 + (d_the2^2*l3^2*m3*sin(the2))/4 + (d_the2^2*l3
^2*m4*sin(the2))/2 - (dd_the1*l2^2*m2*sin(the2)^2)/4 - (dd_the1*l3^2*m3*sin(the2)^2)/4 - (dd_d4
*l3*m4*cos(the2))/2 - (dd_d3*l3*m3*sin(the2))/2 - (dd_d3*l3*m4*sin(the2))/2 + (d_the1^2*l3^2*m3
*sin(the2)^3)/4 + (d_the1^2*l3^2*m4*sin(the2)^3)/2 - (dd_the2*l3^2*m3*cos(the2))/4 - (dd_the2*l3^
2*m4*cos(the2))/2 + 2*Ixx2*d_the1*d_the2*cos(the2)*sin(the2) - 2*Iyy2*d_the1*d_the2
*cos(the2)*sin(the2) + 2*Iyy3*d_the1*d_the2*cos(the2)*sin(the2) - 2*Iyy4*d_the1*d_the2
*cos(the2)*sin(the2) - 2*Izz3*d_the1*d_the2*cos(the2)*sin(the2) + 2*Izz4*d_the1*d_the2
*cos(the2)*sin(the2) + (d4*d_the2^2*l3*m4*cos(the2))/2 - (d4*dd_the1*l4*m4*cos(the2)^2)/2 - d_d3
*d_the1*l4*m4*cos(the2)^2 - (d_the1^2*l2*l4*m4*cos(the2))/2 + (d_the2^2*l3*l4*m4*cos(the2))/4 -
(dd_the1*l2*l3*m3*cos(the2)^2)/2 - (dd_the1*l2*l3*m4*cos(the2)^2)/2 + (d3*d_the2^2*l3*m3
*sin(the2))/2 + (d3*d_the2^2*l3*m4*sin(the2))/2 - (d3*dd_the1*l3*m3*sin(the2)^2)/2 - (d3*dd_the1
*l4*m4*sin(the2)^2)/2 - d_d4*d_the1*l4*m4*sin(the2)^2 - (g*l4*m4*cos(the1)*cos(the2))/2 - (d_the1
^2*l2*l3*m3*sin(the2))/2 - (d_the1^2*l2*l4*m4*sin(the2))/2 - (dd_the1*l2*l3*m3*sin(the2)^2)/2 -
(dd_the1*l2*l3*m4*sin(the2)^2)/2 - (dd_the1*l3*l4*m4*sin(the2)^2)/2 - (g*l3*m3
*cos(the1)*sin(the2))/2 - (g*l4*m4*cos(the1)*sin(the2))/2 + (d_the1^2*l3^2*m3*cos(the2)^2
*sin(the2))/4 + (d_the1^2*l3^2*m4*cos(the2)^2*sin(the2))/2 + (d4*d_the1^2*l3*m4*cos(the2)^3)/2 +
(d_the1^2*l3*l4*m4*cos(the2)^3)/4 + (d3*d_the1^2*l3*m3*sin(the2)^3)/2 + (d3*d_the1^2*l3*m4
*sin(the2)^3)/2 + (d_the1*d_the2*l4^2*m4*sin(the2)^2)/2 - (dd_the1*l4^2*m4
*cos(the2)*sin(the2))/4 - (g*l2*m2*cos(the2)^2*sin(the1))/2 - (g*l3*m3*cos(the2)^2*sin(the1))/2 -
(g*l3*m4*cos(the2)^2*sin(the1))/2 - (g*l2*m2*sin(the1)*sin(the2)^2)/2 - (g*l3*m3
*sin(the1)*sin(the2)^2)/2 - (g*l3*m4*sin(the1)*sin(the2)^2)/2 - (d3*dd_the2*l3*m3*cos(the2))/2 - (d3
*dd_the2*l3*m4*cos(the2))/2 + (d4*dd_the2*l3*m4*sin(the2))/2 + d_d4*d_the2*l3*m4*sin(the2) +
(dd_the2*l3*l4*m4*sin(the2))/4 - (d_the1*d_the2*l3^2*m3*cos(the2)*sin(the2))/2 + (d_the1*d_the2
*l4^2*m4*cos(the2)*sin(the2))/2 + (d3*d_the1^2*l3*m3*cos(the2)^2*sin(the2))/2 + (d3*d_the1^2*l3
*m4*cos(the2)^2*sin(the2))/2 + (d4*d_the1^2*l3*m4*cos(the2)*sin(the2)^2)/2 + (d_the1^2*l3*l4*m4
*cos(the2)*sin(the2)^2)/4 - d3*d_the1*d_the2*l4*m4*cos(the2)^2 - d_the1*d_the2*l3*l4*m4
*cos(the2)^2 + d4*d_the1*d_the2*l4*m4*sin(the2)^2 - (d3*dd_the1*l4*m4*cos(the2)*sin(the2))/2 -
(d4*dd_the1*l4*m4*cos(the2)*sin(the2))/2 + d_d3*d_the1*l3*m4*cos(the2)*sin(the2) - d_d3*d_the1
*l4*m4*cos(the2)*sin(the2) - d_d4*d_the1*l4*m4*cos(the2)*sin(the2) - (dd_the1*l3*l4*m4
*cos(the2)*sin(the2))/2 - d3*d_the1*d_the2*l3*m3*cos(the2)*sin(the2) - d3*d_the1*d_the2*l4*m4
*cos(the2)*sin(the2) + d4*d_the1*d_the2*l4*m4*cos(the2)*sin(the2) - d_the1*d_the2*l3*l4*m4
*cos(the2)*sin(the2)
How can i create state-space from this. Or Is there a matlab algorithm that looks for coefficients of any specific variable from the symbolic equation
The state-space form i want to create;
https://i.hizliresim.com/7r47Ye.png
  1 Kommentar
delil codes
delil codes am 14 Jan. 2021
Variables;
dd_the , dd_d is for D(q)*qDotDot
g is for G(q)
d_the , d_d is for C(q,qDot)

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Statics and Dynamics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by