Two linear equation with absolute value equation
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Murat YAPICI
am 13 Jan. 2021
Kommentiert: Murat YAPICI
am 13 Jan. 2021
Hello,
I have two linear equation and one absolute value equation. Is there a easy way to obtain minimum norm solution ?

0 Kommentare
Akzeptierte Antwort
Bruno Luong
am 13 Jan. 2021
Bearbeitet: Bruno Luong
am 13 Jan. 2021
Correct minimum norm solution is
xmin =
90.0000
-40.0000
5.0000
5.0000
normxmin =
98.7421
obtained with this code
s = cell(1,4);
[s{:}] = ndgrid([-1 1]);
s = reshape(cat(5,s{:}),[],4);
fmin = Inf;
xmin = nan(4,1);
for k=1:size(s,1)
sk = s(k,:);
Aeq = [1 1 -1 -1;
1 1 1 1;
sk.*[1 1 -1 -1]];
beq = [40; 60; 120];
A = -diag(sk);
b = zeros(4,1);
[x,f,flag] = quadprog(eye(4), zeros(4,1), ...
A, b, ...
Aeq, beq, ...
[], []);
if flag > 0 && f < fmin
fmin = f;
xmin = x;
end
end
xmin
normxmin = norm(xmin,2)
% Check the constraints
xmin(1)+xmin(2)-xmin(3)-xmin(4)
xmin(1)+xmin(2)+xmin(3)+xmin(4)
abs(xmin(1))+abs(xmin(2))-abs(xmin(3))-abs(xmin(4))
Weitere Antworten (1)
Alan Stevens
am 13 Jan. 2021
Do you mean something like this
X0 = [-50 -5];
[X, Fval] = fminsearch(@(X) fn(X),X0);
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
disp([x1 x2 x3 x4])
disp(x1+x2+x3+x4)
disp(x1+x2-x3-x4)
disp(abs(x1)+abs(x2)-abs(x3)-abs(x4))
function F = fn(X)
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
F = norm(abs(x1)+abs(x2)-abs(x3)-abs(x4)-120);
end
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

