storing variables after a loop (easy)

5 Ansichten (letzte 30 Tage)
Paul Rogers
Paul Rogers am 8 Jan. 2021
Kommentiert: Paul Rogers am 11 Jan. 2021
Hi, I managed to make a loop in wich I run a function.
The expected outputs are:
t,y(:,1),y(:,2)
The problem is that at the end of the iteration I only get the last part of the loop, but
I would llike to have all the datas, for those vectors, computed during the looop.
Here's the part of the code:
for i=1:(length(giri)-2)
U1(i) = (D1*pi.*giri(i))/60;
U2(i) = (D2*pi.*giri(i))/60;
B(i) = U1(i)./(2.*wh.*Lc);
[t,y]=ode113(@greitzer,[t0(i),tf(i)],[y1(i),y2(i)],options,U1(i),U2(i),B(i)); %I found ode113 is way more efficient
t0(i+1) = time_rpm(i+1); %simulation's start [s]
tf(i+1) = time_rpm(i+2); %simulation's finish [s]
y1(i+1) = y(end,1); %initial condition 1
y2(i+1) = y(end,2); %initial condition 2
plot(t,y(:,2))
grid on
grid minor
xlabel('t [s]')
ylabel('\Psi')
hold on
end
I'd like to call:
t=time
y(:,1)=phi
y(:,2)=psi
  8 Kommentare
Mathieu NOE
Mathieu NOE am 11 Jan. 2021
sure
Glad this little mods solved your problem
I put the same code again below so you can accept it
good luck for the future
clear
clc
close all
%% Gas properties
a01 = 340; %speed of sound in gas(m/s)
p01 = 1e5; %Compressor inlet pressure(Pa)
T01 = 303.35; %Compressor inlet temperature(K)
cp = 1005; %specific heat capacity for constant pressure, property of gas(J/(kg*K))
ro1 = 1.15; %Gas density(kg/m^3)
Re = 100000; %Reynolds number()
k = 1.4; %Gas constant ratio, cp/cv()
%% Compressor characteristics
Lc = 0.53; %Length of compressor and duct(m)
Vp = 0.01; %Plenum volume(m^3)
Ac = 0.0026;
% kl = 0.0008; %Throttle gain, proportional to the throttle opening
Dt1 = 0.074; %Impeller diameter at inducer tip(m)
Dh1 = 0.032; %Impeller diameter at hub casing(m)
D1 = 1/sqrt(2)*sqrt((Dt1)^2+(Dh1)^2); %Average diameter(m)
Di = 0.02; %Mean hydraulic diameter of impeller(m)
Dd = 0.02; %Mean hydraulic diameter of impeller(m)
I = 0.001; %Moment of inertia for the compressor spool(kg*m^2)
alfa1 = pi/2; %Flow angle at inducer, for alpha1 = pi/2 rad, assumed no pre-whirl
A = ((pi*D1^2)/4)*4;
Ai = ((pi*D1^2)/4); % Cross section area impeller(m^2)
Ad = ((pi*D1^2)/4); % Cross section area diffuser(m^2)
li = 0.053; %Mean channel length(m)
ld = 0.053; %Mean channel length(m)
beta1b = 0.61; %Impeller blade inlet angle()
Ch = 4*0.3164*(Re)^-0.25; %Friction loss coefficient()
kf = (Ch*li)/(2*Di*ro1^2*Ai^2*(sin(beta1b))^2)*4; %Friction loss impeller
kfd = (Ch*ld)/(2*Dd*ro1^2*Ad^2*(sin(beta1b))^2)*4; %Friction loss diffuser
sigma = 0.9; %Slip factor()
D2 = 0.128; %Diameter of impeller tip(m)
alfa2b = atan((D1*tan(beta1b))/(sigma*D2));
m = [-0.2:0.001:0.8]; %[kg/s] Mass Flow
cn=10;
%% Speed
giri_medium = 55000; %throttle valve aperture
delta_giri = 400; %range between your gamma_T_max e gamma_T_min
giri_max = giri_medium+(delta_giri/2); %maximum aperture
giri_min = giri_medium-(delta_giri/2); %minimum aperture
A_rpm = (giri_max - giri_min)/2; %amplitude
b_rpm = (giri_max + giri_min)/2;
rpm_frequency = 20; %engine's frequency [Hz]
w_rpm = rpm_frequency*2*pi; %engine's frequency [radiants/s]
% time_rpm=[25:0.01:40]; % original
time_rpm=[25:1:40]; % MN
giri = A_rpm*sin(w_rpm*time_rpm)+b_rpm;
wh = a01.*(Ac./Vp.*Lc).^0.5; %Helmotz's frequency
%% Efficency Losses
deltanbf = 0.02; %Back flow loss() 0.02 annular diffuser - 0,03 medium volume - 0.05 vaned diffuser
deltanv = 0.035; %Volute loss()
deltanc = 0.00; %Clearance loss()
deltand = 0.00; %Diffusion loss()
deltan = deltanbf+deltanv+deltanc+deltand;
%% Throttle valve's parameters
gamma_T = .17; %throttle valve aperture
Delta_gamma_T = .02; %range between your gamma_T_max e gamma_T_min
gamma_T_max = gamma_T+(Delta_gamma_T/2); %maximum aperture
gamma_T_min = gamma_T-(Delta_gamma_T/2); %minimum aperture
A = (gamma_T_max - gamma_T_min)/2; %amplitude
b = (gamma_T_max + gamma_T_min)/2;
%% Compressor's frequency (only frequency)
compressor_frequency = 10; %engine's frequency [Hz]
w = compressor_frequency*2*pi; %engine's frequency [radiants/s]
% save main_parameters.mat
%% Ode's parameters
t0(1) = 0; %simulation's start [s]
tf(1) = time_rpm(2); %simulation's finish [s]
y1(1) = 0; %initial condition 1
y2(1) = 0; %initial condition 2
init = [y1 y2]'; %initial conditions vector
sample_frequency = compressor_frequency*8; %sample frequency [Hz] (choose at least a frequency
% 10-12 times the one being analyzed
% for a good definition. Just 2-3 times for a quick try)
maximum_time_step = 1/sample_frequency;
options= odeset('MaxStep',maximum_time_step); %maximum time-step size
save main_parameters.mat
t_all = []; % MN
y_all = []; % MN
for i=1:(length(giri)-2)
U1(i) = (D1*pi.*giri(i))/60;
U2(i) = (D2*pi.*giri(i))/60;
B(i) = U1(i)./(2.*wh.*Lc);
[t,y]=ode113(@greitzer,[t0(i),tf(i)],[y1(i),y2(i)],options,U1(i),U2(i),B(i)); %I found ode113 is way more efficient
t0(i+1) = time_rpm(i+1); %simulation's start [s]
tf(i+1) = time_rpm(i+2); %simulation's finish [s]
y1(i+1) = y(end,1); %initial condition 1
y2(i+1) = y(end,2); %initial condition 2
% MN : concat t, y for all iterations
t_all = [t_all; t]; % MN
y_all = [y_all; y]; % MN
% array_val = zeros(length(giri)-2) ;
% plot(t,y(:,1))
% grid on
% grid minor
% xlabel('t [s]')
% ylabel('\Phi')
% hold on
% figure()
% plot(t,y(:,2))
% grid on
% grid minor
% xlabel('t [s]')
% ylabel('\Psi')
% hold on
% savefig('10Hz')
end
plot(t0,y1)
grid on
grid minor
xlabel('t [s]')
ylabel('\Phi')
% hold on
figure()
plot(t0,y2)
grid on
grid minor
xlabel('t [s]')
ylabel('\Psi')
% hold on
figure()
plot(t_all,y_all)
grid on
grid minor
xlabel('t [s]')
ylabel('y all')
Paul Rogers
Paul Rogers am 11 Jan. 2021
noope, post it a new answer, not as a comment to the first post, or i won't get the accept button

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Ryan Fedeli
Ryan Fedeli am 8 Jan. 2021
This example is simplified, but to save a value from each loop iteration, all you need to do is save it into an array. The lines with asterisks are the important parts:
z = linspace(1,50,10); % arbitrary vector
b = z; % arbitrary values for example function
array_val = zeros(1,length(z)); % preallocate array for loop speed ***
for i = 1:length(z)
a = b(i)*1.1; % example function to create data
array_val(i) = a; % save the value from this iteration into an array ***
end
disp(array_val)
But if "a" in this example is not a single value, but an array itself, you'd need to save it into a matrix. In this case, it would look something like:
array_val = zeros(length(z)); % 1) preallocate *matrix* of zeros, length(z) by length(z) in size.
% 2) you'll need to figure out what these dimensions should be.
% 3) This line is helpful so the loop runs faster, but it's not necessary
for i = 1:length(z)
a = b(i).*z; % example function to create a row vector of data (array of data)
array_val(:,i) = a; % save the data in the row vector into the matrix in the i'th position
end
disp(array_val)
array_val is now a matrix, where each row is the data from the i'th iteration of the loop
I hope this helps
  1 Kommentar
Paul Rogers
Paul Rogers am 8 Jan. 2021
I am trying to follow your heads up, but in your case you know that a is going too have the same length a z, infacct I get a Subscripted assignment dimension mismatch.
In my case, I don't know how many points the ode is gooing to use for that step.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Produkte


Version

R2014b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by