Indefinite integrals of bessel function
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Rahul Gandhi
am 5 Jan. 2021
Kommentiert: Rahul Gandhi
am 6 Jan. 2021
I have this function that has bessel functions which has to be integrated from infinity to 0 and plot the graph between Fy and r.
Matlab returns NaN as output.

mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
syms q
r=linspace(-10*10^-3,10*10^-3,20)
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F=integral(func,inf,0)
plot(r,F)
%Edited:-Forgot to place F in plot.
4 Kommentare
David Goodmanson
am 6 Jan. 2021
Hi Rahul,
Compared to the expression you posted, it looks func is missing a factor of epsilon. But a much more serious issue is, what happened to the factor of 1/q?
Akzeptierte Antwort
Walter Roberson
am 5 Jan. 2021
you need ArrayValued option for integrate()
2 Kommentare
Walter Roberson
am 5 Jan. 2021
mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
r=linspace(-10*10^-3,10*10^-3,20)
syms q
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F = vpaintegral(func(q), q, inf, 0);
plot(r,F, 'b*-')
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Bessel functions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
