Matrix dimensions must agree.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Muhammad Ezree Amree bin Amran
am 4 Jan. 2021
Kommentiert: Alan Stevens
am 4 Jan. 2021
Hello everyone, can you please help me with this problem? I currently in my project's for Iterative Method. But I can't run the coding because of this problem.
P=(Lamda-beta)./(gamma*2);
Attached below is my full coding, can you guys help me?
clear clc;
% n all alpha beta gamma min max
d=[1 550 8.1000 0.00028 0 680
2 309 8.1000 0.00056 0 360
3 307 8.1000 0.00056 0 360
4 240 7.7400 0.00324 60 180
5 240 7.7400 0.00324 60 180
6 240 7.7400 0.00324 60 180
7 240 7.7400 0.00324 60 180
8 240 7.7400 0.00324 60 180
9 240 7.7400 0.00324 60 180
10 126 8.6000 0.00284 40 120
11 126 8.6000 0.00284 40 120
12 126 8.6000 0.00284 55 120
13 126 8.6000 0.00284 55 120];
Pd=1800; %Pdemand alpha=d(:,2);
n=d(:,1);
beta=d(:,3);
gamma=d(:,4);
Pmin=d(:,5);
Pmax=d(:,6);
DelP=Pd; i=1;
Iteration=i;
Lamda=8.35; % assume lambda L(i,1)=Lamda;
while abs(DelP)> 0.00001
P=(Lamda-beta)./(gamma*2);
P=min(P,Pmax); %p=ph if pmax<p//p>pmax //pick pmax bila pmax kecil dri p
P=max(P,Pmin); %p=pl if pmin>p//p<pmin
DelP=Pd-sum(P); Lamda=Lamda+DelP/(sum(1./(2*gamma)));
costI(:,i)=alpha+(beta.*P)+(gamma.*P.*P);
totalCost_iteration(i,1)=sum(costI(:,i));
Iteration(i,1)=i;
Lamda(i,1)=Lamda;
i=i+1;
end
Cost=alpha+(beta.*P)+(gamma.*P.*P); % Costs totalCost=sum(Cost);
totalPower=sum(P); table(d(:,1),P,Cost,'V',{'Unit' 'Power' 'Cost'})
display(totalCost);
display(totalPower);
figure
plot(Iteration,totalCost_iteration)
title('Convergest Graph')
xlabel('Number of Iteration')
ylabel('Cost(RM/h)')
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 4 Jan. 2021
This works
% n all alpha beta gamma min max
d=[1 550 8.1000 0.00028 0 680
2 309 8.1000 0.00056 0 360
3 307 8.1000 0.00056 0 360
4 240 7.7400 0.00324 60 180
5 240 7.7400 0.00324 60 180
6 240 7.7400 0.00324 60 180
7 240 7.7400 0.00324 60 180
8 240 7.7400 0.00324 60 180
9 240 7.7400 0.00324 60 180
10 126 8.6000 0.00284 40 120
11 126 8.6000 0.00284 40 120
12 126 8.6000 0.00284 55 120
13 126 8.6000 0.00284 55 120];
Pd=1800; %Pdemand
alpha=d(:,2); %%%%%%%%%%%%%%
n=d(:,1);
beta=d(:,3);
gamma=d(:,4);
Pmin=d(:,5);
Pmax=d(:,6);
DelP=Pd; i=1;
Iteration=i;
Lamda=8.35; % assume lambda L(i,1)=Lamda;
while abs(DelP)> 0.00001
P=(Lamda-beta)./(gamma.*2);
P=min(P,Pmax); %p=ph if pmax<p//p>pmax //pick pmax bila pmax kecil dri p
P=max(P,Pmin); %p=pl if pmin>p//p<pmin
DelP=Pd-sum(P); Lamda=Lamda+DelP/(sum(1./(2*gamma)));
costI(:,i)=alpha+(beta.*P)+(gamma.*P.*P);
totalCost_iteration(i,1)=sum(costI(:,i));
Iteration(i,1)=i;
% Lamda(i,1)=Lamda; % This causes a problem during the iterations
i=i+1;
end
Cost=alpha+(beta.*P)+(gamma.*P.*P); % Costs
totalCost=sum(Cost); %%%%%%%%%%%%%%%%%%%
totalPower=sum(P); table(d(:,1),P,Cost,'V',{'Unit' 'Power' 'Cost'})
display(totalCost);
display(totalPower);
figure
plot(Iteration,totalCost_iteration)
title('Convergest Graph')
xlabel('Number of Iteration')
ylabel('Cost(RM/h)')
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!