hopf bifurcation for brusselator
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello everyone!
I have a question about hopf bifurcation for a brusselator problem, how to
implement a code for that. For now my code that I have written looks like below:
a = 1;
b = 2;
x0 = [0 5];
tspan = [1,100];
Bruss = @(t,x) [1 - (b+1)*x(1) + a*x(1)^2*x(2); b*x(1) - a*x(1)^2*x(2)];
options = odeset('RelTol',1e-6,'AbsTol',1e-4);
[T,x] = ode45(Bruss,tspan,x0,options);
% x1 = linspace(0,100,5000);
x1 = x(:,1);
y1 = x(:,2);
% y1 = linspace(0,100,5000);
xnully = ((b+1).*x1-1)./(a.*x1.^2);
ynully = b./(a.*y1);
plot(x1,xnully,y1,ynully);
axis([0 4 0 4])
hold on
% plot(T,x(:,2),T,x(:,1))
% hold on
% plot(a,b/a,'r')
% [m,n] = size(x) ;
[x2,y2] = meshgrid(0:.2:4,0:.2:4);
U = 1-(b+1).*x2 + a.*y2.*x2.^2;
V = b.*x2 - a.*y2.*x2.^2;
L = sqrt(U.^2 + V.^2);
quiver(x2,y2,U./L,V./L,.5,'k')
hold on
plot(a,b/a,'r*')
1 Kommentar
Ana Sar
am 10 Feb. 2021
Hello!
Have you found a solution for this problem? If the answer is yes, please please share it here.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Assembly finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!