MATLAB equivalent functions in Keras
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?
Antworten (1)
Aneela
am 9 Sep. 2024
Hi Ruhi Thomas,
If “tf.keras” is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize) –
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses) –
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer –
- In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
- For a regression task, loss functions like “mean_squared_error”, “mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!