Fourier transform using Convolution

19 Ansichten (letzte 30 Tage)
Nurhan Aydinalp
Nurhan Aydinalp am 23 Dez. 2020
Bearbeitet: Paul am 24 Dez. 2020
I have two signals x(t) = sin(2.*pi.*t)/(pi.*t) and y(t) = x(t) I want to calculate z(t) = x(t)*y(t) and z(JW).I should plot x(t), x(JW), y(t), y(JW) and z(t), z(JW) using subplot. z(JW)=(1/(2pi))*(convolution(x(t),y(t))), I have the following code:w = [-6.*pi 6.*pi];
syms x(t)
x(t) = sin(2.*pi.*t)./(pi.*t);
subplot(3,2,1)
fplot(t,x(t));
title('x(t) vs t');
xlabel('time');
ylabel('x(t)')
X_J_W = fourier(x(t));
subplot(3,2,2)
fplot(X_J_W,w);
title('X(JW) vs w')
ylabel('X(JW)')
xlabel('W')
syms y(t)
y(t) = sin(2.*pi.*t)./(pi.*t);
subplot(3,2,3)
fplot(t,y(t));
title('y(t) vs t');
xlabel('time');
ylabel('y(t)')
Y_J_W = fourier(y(t));
subplot(3,2,4)
fplot(Y_J_W,w);
title('Y(JW) vs w')
ylabel('Y(JW)')
xlabel('W')
syms z(t)
z(t) = x(t).*y(t);
subplot(3,2,5)
fplot(z(t));
C_X_Y = conv(X_J_W,Y_J_W,'full');
Z_J_W = (1./(2.*pi)*(C_X_Y));
subplot(3,2,6)
fplot(Z_J_W,w)
in the convolution part I get
Error using conv2
Invalid data type. First and second arguments must be numeric or logical.
Error in conv (line 43)
c = conv2(a(:),b(:),shape);
and I do not know how to fix it.

Antworten (1)

Matt J
Matt J am 23 Dez. 2020
You must use int to implement a symbolic convolution integral. conv is for numeric convolution.
  12 Kommentare
Matt J
Matt J am 24 Dez. 2020
Truncating the convolution seems to help:
syms x(t) y(t) z(t) c(t) X(w) Y(w) tau
x(t) = sin(2.*pi.*t)./(pi.*t);
y(t) = sin(2.*pi.*t)./(pi.*t);
z(t)=x(t).*y(t);
X(w) = fourier(x(t));
Y(w) = fourier(y(t));
c(t)=int(x(tau).*y(t-tau),tau,-100,+100);
fplot(c(t))
Paul
Paul am 24 Dez. 2020
Bearbeitet: Paul am 24 Dez. 2020
Nurhan,
Why compute the convolution of x(t) and y(t)? I thought the problem at hand is related to the product of x(t) and y(t).
If z(t) = x(t)y(t), then
Z(w) = conv(X(w),Y(w))/2/pi:
>> syms u
>> Z(w)=int(X(u)*Y(w-u),u,-inf,inf)/2/pi;
>> Z(w)
ans =
-((heaviside(- w - 4*pi)*(w + 4*pi))/2 - w*heaviside(-w) + (heaviside(4*pi - w)*(w - 4*pi))/2)/pi
>> fplot(Z(w),[-20 20])
The result can be confirmed by numerically computing the Fourier transform of z(t):
>> fun=matlabFunction(z(t)*exp(-1j*w*t));
>> wr=-20:.1:20;
>> for ii=1:numel(wr),q(ii)=integral(@(t)fun(t,wr(ii)),-20,20);end
>> hold on
>> plot(wr,real(q),'ro'),grid

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Produkte


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by