Simulating a free fall-project with ode45

12 Ansichten (letzte 30 Tage)
Lukas Menzel
Lukas Menzel am 22 Dez. 2020
Kommentiert: Lukas Menzel am 23 Dez. 2020
Hallo everyone, I'm trying to simulate a free fall-project, from the stratosphere (about 50 km) to the ground. So, in order to conclude an appropriate solution, drag must be put in consideration. I've allready found a proper solution for the Euler-method, but not for the ode45-method. Furthermore I need to put the [vector-]solutions of the acceleration (the differnecial) for every single calculation-step, in the velocity terms, I mean you could realize this one easy, by putting a while-slope in the code, that the steps would repeat itself until completion. But now to my issue, I've tried many approches with the ode45-method, but non of those have worked out.
Here my code:
function [a] = Test2
start=[0];
tspan=[0 100];
[t,A] = ode45(@Beschleunigung, tspan, start);
%a(end+1) = - g + 1/(2*m)* c_w * A * rho(end)* (v(end))^2;
plot(t,A(:,1));
end
function dv = Beschleunigung(t, v)
g = 9.81;
m = 120;
c_w = 0.28;
A = 2.7;
rho = 1.2041;
dt = 0.5;
hi = 40000;
vi = 0;
t = [0]; % Deklaration des Zeit-Arrays
h = [hi]; % Deklaration des Höhe-Arrays
v = [vi]; % Deklaration des Geschwindigkeits-Arrays
a = [0]; % Deklaration des Beschleunigungs-Arrays
dv = zeros(2,1);
a=dv(1,end);
dv(1,end+1) = g-(1/2*m)*c_w*A*rho*v^2;
v(end+1)=v(end)+dv(1,end)*dt;
h(end+1)=h(end)+v(end)*dt;
t(end+1)=t(end)+dt;
end
  1 Kommentar
Lukas Menzel
Lukas Menzel am 22 Dez. 2020
And here are the errors of my programm
>> Test2
Error using odearguments (line 93)
BESCHLEUNIGUNG must return a column vector.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options,
varargin);
Error in Test2 (line 10)
[t,A] = ode45(@Beschleunigung, tspan, start);

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 22 Dez. 2020
More like this perhaps:
hi = 40000; % Initial height
start=[hi 0]; % [Initial height, initial velocity]
tspan=[0 100];
[t,A] = ode45(@Beschleunigung, tspan, start);
%a(end+1) = - g + 1/(2*m)* c_w * A * rho(end)* (v(end))^2;
subplot(2,1,1)
plot(t,A(:,1)),grid
xlabel('t'),ylabel('height')
subplot(2,1,2)
plot(t,A(:,2)),grid
xlabel('t'),ylabel('velocity')
function dv = Beschleunigung(~, hv)
g = 9.81;
m = 120;
c_w = 0.28;
A = 2.7;
rho = 1.2041;
v = hv(2); % velocity, positive downwards
dv = [-v; % dh/dt
g-1/(2*m)*c_w*A*rho*v^2]; % dv/dt
end
  8 Kommentare
Lukas Menzel
Lukas Menzel am 23 Dez. 2020
Yeah, thank you
Lukas Menzel
Lukas Menzel am 23 Dez. 2020
Oh and Merry Christmas

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Event Functions finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by