How can I calculate and plot rayleigh scattering equation?
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
hi, I want to plot and calculate rayleigh equation.I wrote it , calculated and plotted.But it does not match the graph in my book.Here is my code.Thx for your help.
clear all
freq=6.*10.^8;
omeg=2.*pi.*freq;
eps0=(10.^-9)./(36.*pi);
mu0=4.*pi.*10.^-7;
k=omeg.*sqrt(eps0.*mu0);
lambda=2.*pi./k;
R=0.01:0.00366:0.07957;
N_cut=20;
for n=1:N_cut
hankel2(n,:)=sqrt(pi*k*R).*besselh(n+0.5,1,k*R);
hankel2der(n,:)=-
n.*sqrt(pi.*k./(2.*R)).*besselh(n+0.5,2,k.*R)+k.*sqrt(pi.*k.*R./2).*besselh(n-
0.5,2,k.*R);
A_e(n,:)=(((-1).^n)).*(2.*n+1)./(hankel2(n,:).*hankel2der(n,:));
end
Ae=sum(A_e,2);
f_Ae=((lambda.^2)./(4.*pi)).*(abs(Ae)).^2;
figure
plot(R,f_Ae)
grid on
2 Kommentare
Ahmed A. Selman
am 5 Apr. 2013
Please use formatted syntax, clarify the specific equation you want to plot, and it would be helpful for anyone if you could refer to the (graph in your book) with something on the internet for comparison of what this nicely-written code produces. At least, mention the book you are referring to. I've copied the code to my editor, and couldn't see why is it not working for you. If you clarified it better, someone could properly assist you.
Akzeptierte Antwort
Youssef Khmou
am 5 Apr. 2013
Bearbeitet: Youssef Khmou
am 5 Apr. 2013
hi, How is the graph you are expecting ? i altered the oscillating frequency to F=6Ghz . take a look at this code , and try also with f=6E+8 Hz ( the original freq you posted ), N_cut is augmented to 200 points .
clear all
freq=6.*10^9; % 6 GHz
omeg=2.*pi.*freq; % Angular frequency in RAD/Second
eps0=(10.^-9)./(36.*pi); % Absolute permittivity in FARAD/Meter
mu0=4.*pi.*10.^-7; % Absolute permeability
k=omeg.*sqrt(eps0.*mu0); % Wave Vector
lambda=2.*pi./k; %wavelength in Meter
N_cut=200;
R=linspace(0.01,0.07957,N_cut); % Radius....
for n=1:N_cut
hankel2(n,:)=sqrt(pi*k*R).*besselh(n+0.5,1,k*R);
A=-n.*sqrt(pi.*k./(2.*R)).*besselh(n+0.5,2,k.*R);
B=+k.*sqrt(pi.*k.*R./2).*besselh(n-0.5,2,k.*R);
hankel2der(n,:)=A+B;
A_e(n,:)=(((-1).^n)).*(2.*n+1)./(hankel2(n,:).*hankel2der(n,:));
end
Ae=sum(A_e,2);
f_Ae=((lambda.^2)./(4.*pi)).*(abs(Ae)).^2;
figure,plot(R,f_Ae),grid on
figure, plot(R,f_Ae), grid on, axis([0.01 0.02 0 0.012])
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Dates and Time finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!