Evaluation-Interpolation using FFT algorithm

1 Ansicht (letzte 30 Tage)
chicken vector
chicken vector am 21 Dez. 2020
Bearbeitet: chicken vector am 22 Dez. 2020
I'm trying to develop a FFT algorithm for evaluation-interpolation of polynomials.
I tried the simple function where the coefficients are expressed as but only the DFT seems to work. I've spent quite some time on this and I can't make it work. Any suggestions?
f = @(x) x^3;
Pf = [1 , 0 , 0 , 0];
yf = FFT(Pf,1);
y = FFT(yf,2)
function y = FFT(P,k)
% k = 1 -> DFT
% k = 2 -> IDFT
N = length(P);
omega = exp(2*pi*1i/N);
if k == 1
l = 1;
p = 1;
elseif k == 2
l = 1/N;
p = -1;
end
if N == 1
y = P;
else
n = N/2;
P_e = P(2:2:end);
P_o = P(1:2:end);
y_e = FFT(P_e,k);
y_o = FFT(P_o,k);
y = zeros(N,1);
for j = 1 : N/2
y(j) = y_e(j) + (l*omega^(p*(j-1)))*y_o(j);
y(j+n) = y_e(j) - (l*omega^(p*(j-1)))*y_o(j);
end
end
end
  1 Kommentar
chicken vector
chicken vector am 22 Dez. 2020
Bearbeitet: chicken vector am 22 Dez. 2020
For anyone having the same problem, below there's the fixed code for IFFT. I'm having some issues on dividing by N inside the recursive function, so it is done outside.
P = [%vector of the evaluations];
N = length(P);
y = IFFT(P)/N;
function y = IFFT(P)
% This works only if N = 2^k
N = length(P);
n = N/2;
omega = exp(-2*pi*1i/N);
if N == 1
y = P;
else
P_e = P(1:2:end);
P_o = P(2:2:end);
y_e = IFFT(P_e);
y_o = IFFT(P_o);
y = zeros(N,1);
for j = 1 : n
y(j) = y_e(j) + omega^(j-1)*y_o(j);
y(j+n) = y_e(j) - omega^(j-1)*y_o(j);
end
end
end

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Matt J
Matt J am 22 Dez. 2020
A highly impractical thing to do. If you know the coefficients of the polynomial, you should just use polyval().
However, if you must use FFT interpolation, then interpft() will readily do it,
  3 Kommentare
Matt J
Matt J am 22 Dez. 2020
Finding the roots of a 15th order polynomial can be highly unstable numerically, e.g.,
rTrue=sort((rand(1,15))*5);
coeffsTrue=poly(rTrue), %true coefficients
coeffsTrue = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
coeffs=coeffsTrue+[0,randn(1,15)]*1e-6*max(coeffsTrue), %add small errors to coefficients
coeffs = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
rTrue, %true roots
rTrue = 1×15
0.1598 0.4384 0.6582 1.3390 1.5456 1.7830 2.1863 2.2286 2.2790 2.6051 2.9448 3.0386 3.6676 4.1255 4.5711
r=sort(real( roots(coeffs) )).' %calculated roots
r = 1×15
0.1596 0.4403 0.6541 1.0277 1.0277 1.1391 1.1391 1.2642 1.2642 1.4859 1.4859 2.3075 2.3075 8.5793 8.5793
chicken vector
chicken vector am 22 Dez. 2020
I used 'roots' aswell and appears to have very good performances until now.
Thank you Matt for your help.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Polynomials finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by