Fin heat transfer Matrix
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Yogesh Bhambhwani
am 16 Dez. 2020
Bearbeitet: Alan Stevens
am 17 Dez. 2020
I need help solving this matrix with the equations given to me:
For the first node: T_1 = T_b
for the internal nodes: (T_2,T_3,T_4) = -T_i-1 +(2+(mdeltax)^2)T_i - Ti+1 = (mdeltax)^2T_inf
for the 5th node: -T_4 + (1+((mdeltax)^2/2))T_5 = ((mdeltax)^2/2)T_inf
where m = sqrt((hp)/(KA_c))
T_inf = 900 degrees celsius
T_b = 400 degress celsius
also have to compare the matrix solution to:
T_analytic = (cosh(m(L-x))/cosh(mL))*(T_b-T_inf)+T_inf
I need some help with the matrix solution.
1 Kommentar
Ive J
am 17 Dez. 2020
Share with us what you've tried so far and clearly explain how do you want to solve this heat transfer equation in particular?
Akzeptierte Antwort
Alan Stevens
am 17 Dez. 2020
Bearbeitet: Alan Stevens
am 17 Dez. 2020
% Construct the matrix
% M = [ 1 0 0 0 0;
% -1 (2+(m*dx)^2) -1 0 0;
% 0 -1 (2+(m*dx)^2) -1 0;
% 0 0 -1 (2+(m*dx)^2) -1;
% 0 0 0 -1 (2+(m*dx)^2)/2];
%
% and the column vector
% K = [T_b;
% (m*dx)^2*T_inf;
% (m*dx)^2*T_inf;
% (m*dx)^2*T_inf;
% (m*dx)^2/2*T_inf];
%
% then you have the matrix equation M*T = K
% where T is a column vector of values of T_1; T_2 ...T_5
% and you can solve for T using T = M\K (notice the backslash
% not forward slash)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Heat and Mass Transfer finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!