Can't figure out how to finalize the code
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Carey n'eville
am 13 Dez. 2020
Kommentiert: Walter Roberson
am 13 Dez. 2020
I need to write a code in order to get Ca1 Ca2 Ca3 Ca4 Cb1 Cb2 Cb3 Cb4 by using this part which is given below. Only for "Eqns_2nd_Order". But I didn't figure out how can I do. So I need to help, could you help me please?
Eqns_2nd_Order=[(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1)%=0
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2))%=0
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3))%=0
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k24*(Ca4)^2*V4)%=0
(Qin*Cbin)-(Q12*Cb1)+(k21*(Cain)^2*V1)%=0
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2))%=0
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3))%=0
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4)]%=0
%Cain=initial concentration of chemical A in units of ML^-3
%Cbin=initial concentration of chemical B in units of ML^-3
MAIN CODE:
%V1=volume of first reactor in L
%V2=volume of second reactor in L
%V3=volume of third reactor in L
%V4=volume of forth reactor in L
%k1=first order reaction rate in units of (L^3)(M^-1)(T^-1)
%k2=second order reaction rate in units of (L^3)(M^-1)(T^-1)
%Each reactor has different reaction rate
%M=mass in units of M
%Qin=inflow in units of (L^3)(T^-1)
%Qout=outflow in units of (L^3)(T^-1)
%Qxy=the flow from reactor x to reactor y (x&y can be 1,2,3..)
%UNITS
%The unit for V1, V2, V3 & V4 is L
%The unit for k1 is hr^-1
%The unit for k2 is L/(mg*hr)
%The unit for M is mg
%The unit for Qin, Qout,Q12, Q23, Q34, Q32, Q43 & Qxy is L/hr
%Given and calculated values
Qin=10;
Q12=10;
Q23=10+5; %Q23=Q12+Q32
Q34=15-5+3; %Q34=Q23-Q32+Q43
Qout=10;
Q32=5;
Q43=3;
Cain=1;
Cbin=0;
V1=25;
V2=75;
V3=100;
V4=25;
k11=0.05;
k12=0.1;
k13=0.5;
k14=0.1;
k21=0.04;
k22=0.08;
k23=0.4;
k24=0.08;
%% PARTA
%Mass Balance Eqns for Chemical Species A
%For reactor 1
%(Qin*Cain)-(Q12*Ca1)-(k11*Cain*V1)==0 %for first order reaction
%(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1)==0 %for second oreder reaction
%For reactor 2
%(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k12*Ca2*V2)==0 %for first order reaction
%(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2))==0 %for second oreder reaction
%For reactor 3
%(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k13*Ca3*V3)==0 %for first order reaction
%(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3))==0 %for second order reaction
%For reactor 4
%(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k14*Ca4*V4)==0 %for first order reaction
%(Q34*Ca,3)-(Q43*Ca,4)-(Qout*Ca,4)-(k24*(Ca4)^2*V4)==0 %for second order reaction
%Mass Balance Eqns for Chemical Species B
%For reactor 1
%(Qin*Cbin)-(Q12*Cb1)+(k11*Ca1*V1)==0 %for first order reaction
%(Qin*Cbin)-(Q12*Cb1)+(k21*(Ca1)^2*V1)==0 %for second oreder reaction
%For reactor 2
%(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k12*Ca2*V2)==0 %for first order reaction
%(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2))==0 %for second oreder reaction
%For reactor 3
%(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k13*Ca3*V3)==0 %for first order reaction
%(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3))==0 %for second order reaction
%For reactor 4
%(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k14*Ca4*V4)==0 %for first order reaction
%(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4)==0 %for second order reaction
syms Ca1 Ca2 Ca3 Ca4 Cb1 Cb1 Cb2 Cb3 Cb4
Eqns_1st_Order=[(Qin*Cain)-(Q12*Ca1)-(k11*Cain*V1)%=0
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k12*Ca2*V2)%=0
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k13*Ca3*V3)%=0
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k14*Ca4*V4)%=0
(Qin*Cbin)-(Q12*Cb1)+(k11*Cain*V1)%=0
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k12*Ca2*V2)%=0
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k13*Ca3*V3)%=0
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k14*Ca4*V4)]%=0
Eqns_2nd_Order=[(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1)%=0
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2))%=0
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3))%=0
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k24*(Ca4)^2*V4)%=0
(Qin*Cbin)-(Q12*Cb1)+(k21*(Cain)^2*V1)%=0
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2))%=0
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3))%=0
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4)]%=0
2 Kommentare
Ive J
am 13 Dez. 2020
I see duplicates for Cb1,
syms Ca1 Ca2 Ca3 Ca4 Cb1 Cb2 Cb3 Cb4
eqns =[(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1) == 0,...
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2)) == 0,...
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3)) == 0,...
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k24*(Ca4)^2*V4) == 0,...
(Qin*Cbin)-(Q12*Cb1)+(k21*(Cain)^2*V1) == 0,...
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2)) == 0,...
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3)) == 0,...
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4) == 0];
vars = [Ca1 Ca2 Ca3 Ca4 Cb1 Cb2 Cb3 Cb4];
solution = solve(eqns, vars);
Akzeptierte Antwort
Walter Roberson
am 13 Dez. 2020
%V1=volume of first reactor in L
%V2=volume of second reactor in L
%V3=volume of third reactor in L
%V4=volume of forth reactor in L
%k1=first order reaction rate in units of (L^3)(M^-1)(T^-1)
%k2=second order reaction rate in units of (L^3)(M^-1)(T^-1)
%Each reactor has different reaction rate
%M=mass in units of M
%Qin=inflow in units of (L^3)(T^-1)
%Qout=outflow in units of (L^3)(T^-1)
%Qxy=the flow from reactor x to reactor y (x&y can be 1,2,3..)
%UNITS
%The unit for V1, V2, V3 & V4 is L
%The unit for k1 is hr^-1
%The unit for k2 is L/(mg*hr)
%The unit for M is mg
%The unit for Qin, Qout,Q12, Q23, Q34, Q32, Q43 & Qxy is L/hr
%Given and calculated values
Qin=10;
Q12=10;
Q23=10+5; %Q23=Q12+Q32
Q34=15-5+3; %Q34=Q23-Q32+Q43
Qout=10;
Q32=5;
Q43=3;
Cain=1;
Cbin=0;
V1=25;
V2=75;
V3=100;
V4=25;
k11=0.05;
k12=0.1;
k13=0.5;
k14=0.1;
k21=0.04;
k22=0.08;
k23=0.4;
k24=0.08;
%% PARTA
%Mass Balance Eqns for Chemical Species A
%For reactor 1
%(Qin*Cain)-(Q12*Ca1)-(k11*Cain*V1)==0 %for first order reaction
%(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1)==0 %for second oreder reaction
%For reactor 2
%(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k12*Ca2*V2)==0 %for first order reaction
%(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2))==0 %for second oreder reaction
%For reactor 3
%(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k13*Ca3*V3)==0 %for first order reaction
%(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3))==0 %for second order reaction
%For reactor 4
%(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k14*Ca4*V4)==0 %for first order reaction
%(Q34*Ca,3)-(Q43*Ca,4)-(Qout*Ca,4)-(k24*(Ca4)^2*V4)==0 %for second order reaction
%Mass Balance Eqns for Chemical Species B
%For reactor 1
%(Qin*Cbin)-(Q12*Cb1)+(k11*Ca1*V1)==0 %for first order reaction
%(Qin*Cbin)-(Q12*Cb1)+(k21*(Ca1)^2*V1)==0 %for second oreder reaction
%For reactor 2
%(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k12*Ca2*V2)==0 %for first order reaction
%(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2))==0 %for second oreder reaction
%For reactor 3
%(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k13*Ca3*V3)==0 %for first order reaction
%(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3))==0 %for second order reaction
%For reactor 4
%(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k14*Ca4*V4)==0 %for first order reaction
%(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4)==0 %for second order reaction
syms Ca1 Ca2 Ca3 Ca4 Cb1 Cb2 Cb3 Cb4
Eqns_1st_Order=[(Qin*Cain)-(Q12*Ca1)-(k11*Cain*V1)%=0
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k12*Ca2*V2)%=0
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k13*Ca3*V3)%=0
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k14*Ca4*V4)%=0
(Qin*Cbin)-(Q12*Cb1)+(k11*Cain*V1)%=0
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k12*Ca2*V2)%=0
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k13*Ca3*V3)%=0
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k14*Ca4*V4)]%=0
Eqns_2nd_Order=[(Qin*Cain)-(Q12*Ca1)-(k21*(Cain)^2*V1)%=0
(Q12*Ca1)+(Q32*Ca3)-(Q23*Ca2)-(k22*(Ca2)^2*(V2))%=0
(Q23*Ca2)+(Q43*Ca4)-(Q32*Ca3)-(Q34*Ca3)-(k23*(Ca3)^2*(V3))%=0
(Q34*Ca3)-(Q43*Ca4)-(Qout*Ca4)-(k24*(Ca4)^2*V4)%=0
(Qin*Cbin)-(Q12*Cb1)+(k21*(Cain)^2*V1)%=0
(Q12*Cb1)+(Q32*Cb3)-(Q23*Cb2)+(k22*(Ca2)^2*(V2))%=0
(Q23*Cb2)+(Q43*Cb4)-(Q32*Cb3)-(Q34*Cb3)+(k23*(Ca3)^2*(V3))%=0
(Q34*Cb3)-(Q43*Cb4)-(Qout*Cb4)+(k24*(Ca4)^2*V4)]%=0
sol = solve(Eqns_2nd_Order, [Ca1 Ca2 Ca3 Ca4 Cb1 Cb2 Cb3 Cb4])
sol.Ca1
sol.Ca2
vpa(sol.Ca2, 3)
2 Kommentare
Walter Roberson
am 13 Dez. 2020
Are you expecting real values? If so then you might want to extract values from sol and create a mask of locations where the imaginary components are 0, and combine:
Ca1 = sol.Ca1;
Ca2 = sol.Ca2;
[...]
mask = all(imag([Ca1, Ca2, Ca3, Ca4, Ca5, Ca6, Ca7, Ca8]) == 0, 2);
rCa1= Ca1(mask);
rCa2 = Ca2(mask);
...
Afterwards, of the r* are not empty, they will correspond to solutions in which the components are all real-only.
It would not be surprising with these kinds of systems for there to be either no pure-real solutions or else two pure-real solutions.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Reaction Engineering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



