neural network with bayesian regularization: find weights and biases and recalculate the network
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Michael Arnold
am 11 Dez. 2020
Bearbeitet: Michael Arnold
am 15 Dez. 2020
Hey,
i´m trying to use a neural network to guess functional values for unknown points. This is my current solution.
%target f(x)=(x^2 + 22*x - 100)/(4*x)
%for x = [2,9]
inputall = 2:0.01:9;
outputall = (inputall.^2+22*inputall-100)./(4*inputall);
%training data
inputtrain = 2:1:9;
outputtrain = (inputtrain.^2+22*inputtrain-100)./(4*inputtrain);
%neural network
neurons = 5;
net = feedforwardnet(neurons,'trainbr');
net = train(net,inputtrain,outputtrain);
%prediction
predict(1,:) = net(inputall);
%comparison
comp = [outputall' predict']
%visualization
figure('Name','comparison'); hold on;
plot(inputall,outputall);
plot(inputall,predict)
Now I want to know what weights and biases the network finaly used. How can i get them and is it possible to use them to recalculate by myself the solution of the network?
Best regards
Michael
0 Kommentare
Akzeptierte Antwort
Sai Veeramachaneni
am 15 Dez. 2020
Hi,
You can use net.IW, net.LW, net.b properties of neural network object to get weights and biases used in the network.
References:
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!