Adjust Plot to Center on a specific point
37 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a 2-body plot (Earth and Mars) and the center of the plot is not on one of the bodies. I would like to shift the center to be one mars. As in making the plot mars centric.
clc
clear
close all
earthrv =[91900278.4829176; -120935705.950185; 5320.0593002369; 23.22799727906; 17.9095930906743; -0.00087982431168286];
marsrv = [-1419159.59812317; 234896748.848865; 4957065.40583768; -23.310647752292; 1.91254780464408; 0.612032897279168];
tol = 1e-12;
tof_sc= [0 203*3600*24];
hold on
plot3(earthrv(1),earthrv(2),earthrv(3), 'o', 'MarkerFaceColor', 'green', 'MarkerSize',9)
plot3(marsrv (1),marsrv (2),marsrv (3), 'o', 'MarkerFaceColor', 'red', 'MarkerSize',9)
scrv = [earthrv(1); earthrv(2); earthrv(3); earthrv(4)+ 2.75; earthrv(5)+ 2.75; -0.00087982431168286+1.15]
iter = 0;
options = odeset('RelTol', tol, 'AbsTol', tol);
[t, xd3] = ode45(@twobody, tof_sc, scrv, options);
plot3(xd3(:, 1), xd3(:, 2), xd3(:, 3), '--', 'MarkerEdgeColor', 'k');
xlabel("X");
ylabel("Y");
zlabel("Z");
view(20, 20)
grid on
hold off
%% Functions
function [dvp, dva, TOF, delta_v] = hohman(r1, r2, mu)
vt1 = sqrt(-2*mu/(r1+r2) + 2*mu/r1);%is the periapse velocity on the transfer orbit
vc1 = sqrt(mu/r1);
vt2 = sqrt(-2*mu/(r1+r2) + 2*mu/r2);%the apoapse velocity on the transfer orbit
vc2 = sqrt(mu/r2);
dvp = abs(vt1 - vc1);
dva = abs(vt2 - vc2);
delta_v = dvp + dva;
TOF = pi*sqrt((r1+r2)^3 / 8*mu);
end
function [xd] = twobody (t,x)
muu = 1.327e11;
xd = [x(4:6); (-muu/norm(x(1:3))^3)*x(1:3)];
end
0 Kommentare
Antworten (1)
Cris LaPierre
am 8 Dez. 2020
Bearbeitet: Cris LaPierre
am 8 Dez. 2020
I'm not aware of a function for doing this, but what is at the center of a plot is controlled by the axes limits. With a little math, you can force mars to be in the center.
Here's one way of doing it
earthrv =[91900278.4829176; -120935705.950185; 5320.0593002369; 23.22799727906; 17.9095930906743; -0.00087982431168286];
marsrv = [-1419159.59812317; 234896748.848865; 4957065.40583768; -23.310647752292; 1.91254780464408; 0.612032897279168];
tol = 1e-12;
tof_sc= [0 203*3600*24];
hold on
plot3(earthrv(1),earthrv(2),earthrv(3), 'o', 'MarkerFaceColor', 'green', 'MarkerSize',9)
plot3(marsrv (1),marsrv (2),marsrv (3), 'o', 'MarkerFaceColor', 'red', 'MarkerSize',9)
scrv = [earthrv(1); earthrv(2); earthrv(3); earthrv(4)+ 2.75; earthrv(5)+ 2.75; -0.00087982431168286+1.15];
iter = 0;
options = odeset('RelTol', tol, 'AbsTol', tol);
[t, xd3] = ode45(@twobody, tof_sc, scrv, options);
plot3(xd3(:, 1), xd3(:, 2), xd3(:, 3), '--', 'MarkerEdgeColor', 'k');
xlabel("X");
ylabel("Y");
zlabel("Z");
view(20, 20)
grid on
hold off
%###########################################
% New code added to place mars in the center
dX = max(abs(marsrv(1)-xlim));
dY = max(abs(marsrv(2)-ylim));
dZ = max(abs(marsrv(3)-zlim));
xlim(marsrv(1)+[-dX dX]);
ylim(marsrv(2)+[-dY dY]);
zlim(marsrv(3)+[-dZ dZ]);
%###########################################
%% Functions
function [dvp, dva, TOF, delta_v] = hohman(r1, r2, mu)
vt1 = sqrt(-2*mu/(r1+r2) + 2*mu/r1);%is the periapse velocity on the transfer orbit
vc1 = sqrt(mu/r1);
vt2 = sqrt(-2*mu/(r1+r2) + 2*mu/r2);%the apoapse velocity on the transfer orbit
vc2 = sqrt(mu/r2);
dvp = abs(vt1 - vc1);
dva = abs(vt2 - vc2);
delta_v = dvp + dva;
TOF = pi*sqrt((r1+r2)^3 / 8*mu);
end
function [xd] = twobody (t,x)
muu = 1.327e11;
xd = [x(4:6); (-muu/norm(x(1:3))^3)*x(1:3)];
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!