how to use SVM classsifier

1 Ansicht (letzte 30 Tage)
Keerthi  D
Keerthi D am 6 Dez. 2020
Kommentiert: Keerthi D am 10 Dez. 2020
sir.
how to do the SVM classifer(multiclass) to classify four leaf diseases.
here i am doing preprocessing,and then after the segmentation using kmeans clustering
my code is uploded here.please check it and please help me
clc
close all
clear all
[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a Leaf Image File');
I = imread([pathname,filename]);
I = imresize(I,[256,256]);
% Enhance Contrast
I = imadjust(I,stretchlim(I));
%figure, imshow(I);title('Contrast Enhanced');
% Otsu Segmentation
%I_Otsu = im2bw(I,graythresh(I));
% Conversion to HIS
%I_HIS = rgb2hsi(I);
%% Extract Features
% Color Image Segmentation
% Use of K Means clustering for segmentation
% Convert Image from RGB Color Space to L*a*b* Color Space
% The L*a*b* space consists of a luminosity layer 'L*', chromaticity-layer 'a*' and 'b*'.
% All of the color information is in the 'a*' and 'b*' layers.
cform = makecform('srgb2lab');
% Apply the colorform
lab_he = applycform(I,cform);
% Classify the colors in a*b* colorspace using K means clustering.
% Since the image has 3 colors create 3 clusters.
% Measure the distance using Euclidean Distance Metric.
ab = double(lab_he(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
nColors = 3;
[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean', ...
'Replicates',3);
%[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3);
% Label every pixel in tha image using results from K means
pixel_labels = reshape(cluster_idx,nrows,ncols);
%figure,imshow(pixel_labels,[]), title('Image Labeled by Cluster Index');
% Create a blank cell array to store the results of clustering
segmented_images = cell(1,3);
% Create RGB label using pixel_labels
rgb_label = repmat(pixel_labels,[1,1,3]);
for k = 1:nColors
colors = I;
colors(rgb_label ~= k) = 0;
segmented_images{k} = colors;
end
figure, subplot(3,1,1);imshow(segmented_images{1});title('Cluster 1'); subplot(3,1,2);imshow(segmented_images{2});title('Cluster 2');
subplot(3,1,3);imshow(segmented_images{3});title('Cluster 3');
set(gcf, 'Position', get(0,'Screensize'));
% Feature Extraction
x = inputdlg('Enter the cluster no. containing the ROI only:');
i = str2double(x);
% Extract the features from the segmented image
seg_img = segmented_images{i};
% Convert to grayscale if image is RGB
if ndims(seg_img) == 3
img = rgb2gray(seg_img);
end
%figure, imshow(img); title('Gray Scale Image');
% Evaluate the disease affected area
black = im2bw(seg_img,graythresh(seg_img));
%figure, imshow(black);title('Black & White Image');
m = size(seg_img,1);
n = size(seg_img,2);
zero_image = zeros(m,n);
%G = imoverlay(zero_image,seg_img,[1 0 0]);
cc = bwconncomp(seg_img,6);
diseasedata = regionprops(cc,'basic');
A1 = diseasedata.Area;
sprintf('Area of the disease affected region is : %g%',A1);
I_black = im2bw(I,graythresh(I));
kk = bwconncomp(I,6);
leafdata = regionprops(kk,'basic');
A2 = leafdata.Area;
sprintf(' Total leaf area is : %g%',A2);
%Affected_Area = 1-(A1/A2);
Affected_Area = (A1/A2);
if Affected_Area < 0.1
Affected_Area = Affected_Area+0.15;
end
sprintf('Affected Area is: %g%%',(Affected_Area*100))
% Create the Gray Level Cooccurance Matrices (GLCMs)
glcms = graycomatrix(img);
% Derive Statistics from GLCM
stats = graycoprops(glcms,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast
Correlation = stats.Correlation
Energy = stats.Energy
Homogeneity = stats.Homogeneity
Mean = mean2(seg_img)
Standard_Deviation = std2(seg_img)
Entropy = entropy(seg_img)
%RMS = mean2(rms(seg_img));
%Skewness = skewness(img)
Variance = mean2(var(double(seg_img)))
a = sum(double(seg_img(:)));
Smoothness = 1-(1/(1+a))
Kurtosis = kurtosis(double(seg_img(:)))
Skewness = skewness(double(seg_img(:)))
% Inverse Difference Movement
m = size(seg_img,1);
n = size(seg_img,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = seg_img(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end

Antworten (1)

Shadaab Siddiqie
Shadaab Siddiqie am 9 Dez. 2020
Here is a SVM resource which might help you to understand MATLAB svm function. Also refere this project for more understanding about classification using svm predict block.
  1 Kommentar
Keerthi  D
Keerthi D am 10 Dez. 2020

But l can't. Can you help me through the code. Please give me the proper code for my code.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by