Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

How to supply a function elementwise to Integral2

1 Ansicht (letzte 30 Tage)
Kolibris
Kolibris am 21 Mär. 2013
Geschlossen: MATLAB Answer Bot am 20 Aug. 2021
Hi guys,
I want to evaluate a double integral of the form int_{-inf}^a int_{-inf}^b sum_{i,j}^K a_i*a_j*x^i*y^j*exp(-x^2 - y^2 + x*y)dx dy where a_i and a_j are constants. Since the integral is linear, I can change summation and integration, but in this case I have to evaluate K^2 integrals and it takes too long. In that case I do the following:
for i = 1:K
for j = 1:K
fun = @(x,y) x.^i.*y.^j.*exp(-2.*(x.^2 + y.^2 - 2.*x.*y))
part(i,j) = alpha(i)*alpha(j)*integral2(fun,-inf,a,-inf,b)
end
end
It takes too long, so I want to evaluate only one integral, but I don't know how to factorize sum_{i,j}^K a_i*a_j*x^i*y^j*exp(-x^2 - y^2 + x*y), namely, how to supply it to integral2. | would be very grateful for any help.
Kind regards, Renata

Antworten (0)

Diese Frage ist geschlossen.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by