Fit returns Imaginary Coefficients

12 Ansichten (letzte 30 Tage)
Chris
Chris am 20 Mär. 2013
Kommentiert: Matt J am 24 Apr. 2022
I am fitting a complex function to complex data, but the coefficients must be real. However, when fitting I get complex valued coefficients. Most of the time its fine, because the complex part is several orders of magnitude smaller than the real part, but sometimes beta(1) has a complex part that is of the same order of magnitude as the real part. I have tried using both nlinfit and lsqcurvefit. What fitting function and options can I use to force the coefficients to stay real? I cannot just ignore the complex data because it is important, and I cannot fit the imaginary and real data separately because the coefficients must be the same for the real and imaginary part.
F = @(beta,k) beta(1)*beta(2)*exp(-beta(2)^2/2*(k - beta(3)).^2 - 1i*beta(4)*(beta(3) - k))
  2 Kommentare
Matt J
Matt J am 20 Mär. 2013
Bearbeitet: Matt J am 20 Mär. 2013
You haven't mentioned what code you're using to perform the fit.
Chris
Chris am 20 Mär. 2013
I have tried nlinfit and lsqcurvefit. Both yield the same result.

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Matt J
Matt J am 20 Mär. 2013
Bearbeitet: Matt J am 20 Mär. 2013
Change F to
model= @(beta,k) beta(1)*beta(2)*exp(-beta(2)^2/2*(k - beta(3)).^2 - 1i*beta(4)*(beta(3) - k))
F=@(beta,k) [real(model(beta,k)); imag(model(beta,k))];
and split your ydata into real and imaginary parts similarly.
  2 Kommentare
Chris
Chris am 21 Mär. 2013
and then just fit the real part?
Matt J
Matt J am 21 Mär. 2013
Bearbeitet: Matt J am 21 Mär. 2013
No, as you can see from my modification of F, the imaginary part is included as well
imag(model(beta,k))

Melden Sie sich an, um zu kommentieren.


Miranda Jackson
Miranda Jackson am 23 Apr. 2022
Use real() on all the coefficients in the fitting function so the imaginary part won't have any effect on the solution. Then use real() on the resulting coefficients you get from lsqcurvefit. Even if the coefficients go complex, only the real part will affect the result of the fit.
  1 Kommentar
Matt J
Matt J am 24 Apr. 2022
Note that with this approach, you will not be able to apply bounds on the coefficients.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by