ODE45 must return column vector
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Henry Jackson
am 30 Nov. 2020
Bearbeitet: Star Strider
am 30 Nov. 2020
I just have to solve using ode45 for every value of I and plot the solution but i cant quite figure it out.
I=[80,131,189,270,320,407,450,530,620,686,740,900,1095];
t2=[74,29,21,12,8,5.7,4.4,3.6,2.1,1.8,1.5,1.0,0.7];
a=.000104;
b=.000073;
p=1089;
R=0.000003;
n=0.001;
M=0.05;
u=4*pi*10^(-7);
x1=0.36;
alpha=-(p*M*R^2*u.*I)/(9*pi*n);
beta=-(x1*R^2*u.*I.^(2))/(18*pi.^(2)*n);
ode = @(t2,x,I) (1./(alpha.*x^(-2)+beta.*x^(-3)));
for k = 1:numel(I)
[t2,x(:,k)]=ode45(@(t,x) ode(t,x,I(k)),[0:.1:20],0.1);
end
figure
loglog(t2,x)
grid
xlim([0 1])
xlabel('t_1')
ylabel('x')
nstr = compose('I = %.2f',I);
legend(nstr, 'Location','NW')
Aything helps.
0 Kommentare
Akzeptierte Antwort
Star Strider
am 30 Nov. 2020
Bearbeitet: Star Strider
am 30 Nov. 2020
Try this:
I=[80,131,189,270,320,407,450,530,620,686,740,900,1095];
t2=[74,29,21,12,8,5.7,4.4,3.6,2.1,1.8,1.5,1.0,0.7];
a=.000104;
b=.000073;
p=1089;
R=0.000003;
n=0.001;
M=0.05;
u=4*pi*10^(-7);
x1=0.36;
alpha=@(k) -(p*M*R^2*u.*I(k))/(9*pi*n);
beta= @(k) -(x1*R^2*u.*I(k).^(2))/(18*pi.^(2)*n);
ode = @(t2,x,k) (1./(alpha(k).*x^(-2)+beta(k).*x^(-3)));
tv = logspace(-10, log10(20), 50);
for k = 1:numel(I)
[t2,x(:,k)]=ode45(@(t,x) ode(t,x,k),tv,0.1);
end
figure
loglog(t2,x)
grid
xlim([0 1])
xlabel('t_1')
ylabel('x')
nstr = compose('I = %5g',I);
legend(nstr, 'Location','eastoutside')
EDIT — (30 Nov 2020 at 21:02)
.
0 Kommentare
Weitere Antworten (1)
Ameer Hamza
am 30 Nov. 2020
What are the values of alpha and beta you are using? Following code works without error
I=[80,131,189,270,320,407,450,530,620,686,740,900,1095];
t2=[74,29,21,12,8,5.7,4.4,3.6,2.1,1.8,1.5,1.0,0.7];
alpha = 1;
beta = 2;
ode = @(t2,x,I) (1./(alpha.*x^(-2)+beta.*x^(-3)));
for k = 1:numel(I)
[t2,x(:,k)]=ode45(@(t,x) ode(t,x,I(k)),[0:.1:20],0.1);
end
figure
loglog(t2,x)
grid
xlim([0 1])
xlabel('t_1')
ylabel('x')
nstr = compose('I = %.2f',I);
legend(nstr, 'Location','NW')
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!