Need help on solving this bisection method question
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kaitlyn Waters
am 23 Nov. 2020
Bearbeitet: Alan Stevens
am 23 Nov. 2020
: Given the equation 𝑓(𝑥) = −2𝑥^6 − 1.6𝑥^4 + 12𝑥 + 1
Write a code to use the bisection method to calculate the maximum between [0,1]. Iterate until the approximate absolute error falls below 5%. Print the root and number of iterations on the screen.
I've done this so far with the script but I don't know where to go from here. Please help.
syms x
f(x)=-2*x^6-1.6*x^4+12*x+1;
dfdx= diff(f,x);
a=0;
b=1;
i=0;
err=1000;
while err>0.05
c=(a+b)/2
if double((dfdx(a)))*double((dfdx(c)))<0
a=c
else
b=c
end
err=;
i=i+1;
end
fprintf('The max of equation in [0,1] is %f by %d',c, i)
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 23 Nov. 2020
Bearbeitet: Alan Stevens
am 23 Nov. 2020
You really don't need any symbolic parameters here; and you had the logic with a and b the wrong way round! Try
f = @(x) -2*x.^6-1.6*x.^4+12*x+1;
dfdx= @(x) -12*x.^5 - 6.4*x.^3 + 12;
a=0;
b=1;
i=0;
err=1000;
while err>0.05
c=(a+b)/2;
if dfdx(a)*dfdx(c)<0
b=c;
else
a=c;
end
err = abs(dfdx(c)); % Assuming the error is in the gradient
i=i+1;
end
fprintf('The max of equation in [0,1] is %f in %d iterations',f(c), i)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!