How to eliminate standalone 1 or 0 in binary matrix
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Simon Allosserie
am 23 Nov. 2020
Kommentiert: Setsuna Yuuki.
am 24 Nov. 2020
Hello
I have large binary matrices (order 30000 x 5000 values) in which I have to eliminate stand-alone 1's or 0's.
E.g. when a row looks like this: 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1
It should be adapted to: 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
Or thus, when there's only one 1 between some 0's or one 0 between some 1's, it should be changed to a 0 or 1 respectively.
I have no clue how to do this except from running through the entire matrix and keeping count of the length of the series of 1's or 0's - which seems utterly inefficiënt to me. Any ideas on functions or better ways to tackle this? Thanks!
0 Kommentare
Akzeptierte Antwort
Rik
am 23 Nov. 2020
I would suggest using a convolution with a flat kernel.
kernel=ones(1,3,1);kernel=kernel/sum(kernel(:));
A=[0 0 1 1 1 0 1 1 0 0 1 0 1 1 1];
B=convn(A,kernel,'same');
C=round(B);
clc,disp([A;B;C])%display the original, the convolution result and the final output
Note that the [0 0 1 0 1 1] is changed to [0 0 0 1 1 1]. If you don't want that, you can change the kernel to something like this:
kernel=[1 1 1 0 0];kernel=kernel/sum(kernel(:));
4 Kommentare
Rik
am 23 Nov. 2020
The more fundamental question is what the values should be. If you have a clear description of that, I might be able to help you find the right kernel.
Also note that this kernel only considers rows. It will work on a 2D array as well, but it will not check multiple rows at once. You can change the kernel to 2D if you want to change that.
Weitere Antworten (1)
Setsuna Yuuki.
am 23 Nov. 2020
Bearbeitet: Setsuna Yuuki.
am 23 Nov. 2020
You only need a loop and correct conditional statement, the conditional can be:
if(A(n) ~= A(n+1) && A(n) ~= A(n-1) && A(n) == 1)
A(n) = 0;
elseif(A(n) ~= A(n+1) && A(n) ~= A(n-1) && A(n) == 0)
A(n) = 1;
end
so you compare only with the previous bit and the next.
5 Kommentare
Rik
am 24 Nov. 2020
This code can be simplified (or at least be edited to remove duplicated code):
%option 1:
sz=size(A);
for m = 1:sz(1)
for n=1:sz(2)
if ...
( n==1 && ...
(A(m,n) ~= A(m,2 ) && A(m,n) ~= A(m,3 )) ) || ...
( n==sz(2) && ...
( A(m,n) ~= A(m,end-1)) ) || ...
( ( n~=1 && n~=sz(2) ) && ...
(A(m,n) ~= A(m,n+1) && A(m,n) ~= A(m,n-1 )) )
A(m,n) = abs(A(m,n)-1);
end
end
end
%option 2:
sz=size(A);
for m = 1:sz(1)
for n=1:sz(2)
if n==1
L = (A(m,n) ~= A(m,2 ) && A(m,n) ~= A(m,3 )) ;
elseif n==sz(2)
L = A(m,n) ~= A(m,end-1)) ;
else
L = (A(m,n) ~= A(m,n+1) && A(m,n) ~= A(m,n-1 )) ;
end
if L
A(m,n) = abs(A(m,n)-1);
end
end
end
Setsuna Yuuki.
am 24 Nov. 2020
I did it this way:
A = [0 0 1 1 1 0 1 1 0 ;0 0 0 1 0 1 0 1 1]';
[r,c,~]=size(A);
A = reshape(A,[1, r*c]);
for n = 2:r*c-1
if(A(n) ~= A(n+1) && A(n) ~= A(n-1) && A(n) == 1)
A(n) = 0;
elseif(A(n) ~= A(n+1) && A(n) ~= A(n-1) && A(n) == 0)
A(n) = 1;
end
end
A = reshape(A,[r,c])';
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!