Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
Can anyone help me fix that error please
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
function dydt = vdp1(t,y)
% input parameters
Dr = 0.05;
Dc = 0.05;
Dh = 0.05;
Dt = 0.09;
Db = 0.099;
Lr = 0.5;
Lc = 0.5;
Lh = 0.5;
Li = 0.5;
g = 9.81;
rho = 1000;
mu = 1.002e-3;
Lp = 1;
Dp = 0.0414;
H0 = 1.5;
Hs = 0.025;%
C0 = 10;%
Cs = 10;%
Ct = 10;
Pa = 10^5;
D0 = 0.032;
Ds = 0.025;%
Kv0 = 2;%
Kvs = 2;%
Kp = 2992;
mI2 = 0.3;%
Tr = 30;%
Te = 100;
Tc = 20;
%%
Vr = (pi*(Dr/2)^2)*Lr;
Ac = pi*(Dc/2)^2;
Ah = pi*(Dh/2)^2;
Ap = pi*(Dp/2)^2;
A0 = pi*(D0/2)^2;
As = pi*(Ds/2)^2;
At = pi*(Dt/2)^2;
Ab = pi*(Db/2)^2;
%%
P = y(1);
lh = y(2);
dlh = y(3);
lc = y(4);
dlc = y(5);
lt = y(6);
dlt = y(7);
% Pm equation 59
Pm = ((Ab^(2)/(mI2+mf))+(At/(rho*(lt+Ct)))+(Ac/(rho*lc))+(Ah/(rho*lh)))^(-1)...
*((-Ab/(mI2+mf))*((rho*g*(Li+xp)-Pa)*Ab + Cf*dxp+Hf+Cfd*dxp^(2)-Kp*xp)-...
(At/(rho*lt))*(-Pa-rho*g*lt-8*mu*pi*(lt-Ct)*dlt/At)-(Ac/(rho*lc))*(-P-rho*g*lc-8*mu*pi*lc*dlc/Ac)...
-(Ah/(rho*lh))*(P-rho*g*lh-8*pi*mu*lh*dlh/Ah));
%%
dydt = zeros(9,1);
Vc = Ac*(Lc - lc);
Ve = Ah*(Lh - lh);
dydt(1) = (-P/((Vr/Tr)+(Vc/Tc)+(Ve/Te)))*((1/Tc)*(-Ac*dlc)+(1/Te)*(-Ah*dlh));
dydt(2) = y(3);
dydt(3) = (1/(rho*lh))*((Pm - P) - rho*g*lh - 8*pi*mu*(lh/Ah)*dlh);
dydt(4) = y(5);
dydt(5) = (1/(rho*lc))*((Pm-P)-rho*g*lc-8*pi*mu*lc*dlc/Ac);
dydt(6) = y(7);
dydt(7) = (1/(rho*(lt+Ct)))*((Pm-Pa)-rho*g*lt-8*mu*pi*(lt+Ct)*dlt/At);
end
close all;
clear ;
tspan = 0:0.01:20;
y0 = [1.1025e05 0.5 0 0.4 0 1.5 0 0.04 0]' ;
[t,y] = ode45(@vdp1, tspan, y0);
%%
figure(1)
plot(tspan,y(:,1),'b','LineWidth',2)
title('Variations of working gas pressure')
xlabel('time (Sec)')
ylabel('P (pa)')
%%
figure(2)
plot(tspan,y(:,2),'b','LineWidth',2)
title('Hot liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lh')
%%
figure(3)
plot(tspan,y(:,4),'b','LineWidth',2)
title('Cold liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lc')
%%
figure(4)
plot(tspan,y(:,6),'b','LineWidth',2)
title('Tuning column oscillations')
xlabel('time (Sec)')
ylabel('lc')
0 Kommentare
Antworten (2)
Stephan
am 20 Nov. 2020
You missed to define several variables, which are used in your equations:
% several used variables are not defined! - i set them all = 1:
mf = 1;
xp = 1;
Cf = 1;
dxp = 1;
Hf = 1;
Cfd = 1;
The complete and working code is here - just change the values for the variables as needed:
tspan = 0:0.01:20;
y0 = [1.1025e05 0.5 0 0.4 0 1.5 0 0.04 0]' ;
[t,y] = ode45(@vdp1, tspan, y0);
%%
figure(1)
plot(tspan,y(:,1),'b','LineWidth',2)
title('Variations of working gas pressure')
xlabel('time (Sec)')
ylabel('P (pa)')
%%
figure(2)
plot(tspan,y(:,2),'b','LineWidth',2)
title('Hot liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lh')
%%
figure(3)
plot(tspan,y(:,4),'b','LineWidth',2)
title('Cold liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lc')
%%
figure(4)
plot(tspan,y(:,6),'b','LineWidth',2)
title('Tuning column oscillations')
xlabel('time (Sec)')
ylabel('lc')
function dydt = vdp1(~,y)
% several used variables are not defined! - i set them all = 1:
mf = 1;
xp = 1;
Cf = 1;
dxp = 1;
Hf = 1;
Cfd = 1;
% input parameters
Dr = 0.05;
Dc = 0.05;
Dh = 0.05;
Dt = 0.09;
Db = 0.099;
Lr = 0.5;
Lc = 0.5;
Lh = 0.5;
Li = 0.5;
g = 9.81;
rho = 1000;
mu = 1.002e-3;
Lp = 1;
Dp = 0.0414;
H0 = 1.5;
Hs = 0.025;%
C0 = 10;%
Cs = 10;%
Ct = 10;
Pa = 10^5;
D0 = 0.032;
Ds = 0.025;%
Kv0 = 2;%
Kvs = 2;%
Kp = 2992;
mI2 = 0.3;%
Tr = 30;%
Te = 100;
Tc = 20;
%%
Vr = (pi*(Dr/2)^2)*Lr;
Ac = pi*(Dc/2)^2;
Ah = pi*(Dh/2)^2;
Ap = pi*(Dp/2)^2;
A0 = pi*(D0/2)^2;
As = pi*(Ds/2)^2;
At = pi*(Dt/2)^2;
Ab = pi*(Db/2)^2;
%%
P = y(1);
lh = y(2);
dlh = y(3);
lc = y(4);
dlc = y(5);
lt = y(6);
dlt = y(7);
% Pm equation 59
Pm = ((Ab^(2)/(mI2+mf))+(At/(rho*(lt+Ct)))+(Ac/(rho*lc))+(Ah/(rho*lh)))^(-1)...
*((-Ab/(mI2+mf))*((rho*g*(Li+xp)-Pa)*Ab + Cf*dxp+Hf+Cfd*dxp^(2)-Kp*xp)-...
(At/(rho*lt))*(-Pa-rho*g*lt-8*mu*pi*(lt-Ct)*dlt/At)-(Ac/(rho*lc))*(-P-rho*g*lc-8*mu*pi*lc*dlc/Ac)...
-(Ah/(rho*lh))*(P-rho*g*lh-8*pi*mu*lh*dlh/Ah));
%%
dydt = zeros(9,1);
Vc = Ac*(Lc - lc);
Ve = Ah*(Lh - lh);
dydt(1) = (-P/((Vr/Tr)+(Vc/Tc)+(Ve/Te)))*((1/Tc)*(-Ac*dlc)+(1/Te)*(-Ah*dlh));
dydt(2) = y(3);
dydt(3) = (1/(rho*lh))*((Pm - P) - rho*g*lh - 8*pi*mu*(lh/Ah)*dlh);
dydt(4) = y(5);
dydt(5) = (1/(rho*lc))*((Pm-P)-rho*g*lc-8*pi*mu*lc*dlc/Ac);
dydt(6) = y(7);
dydt(7) = (1/(rho*(lt+Ct)))*((Pm-Pa)-rho*g*lt-8*mu*pi*(lt+Ct)*dlt/At);
end
3 Kommentare
Stephan
am 20 Nov. 2020
Your system appears to be highly stiff. I rechanged the formula for Pm to the long version, because i was not able to get a solution with the one you used. Note that this means you need parameter values for the additional parameters. Maybe the problem is more easy to solve when meaningful parameters are used. Also i had to reduce the 'RelTol' Parameter extremly and used a stiff solver. Also note that i have changed tspan to a small value - have a look at what happens when you set the upper limit to 20. Since i have no insight in your problem, i guess there is not much more i can do for you.
tspan = [0 0.5];
y0 = [1.1025e05, 0.5, 0, 0.4, 0, 1.5, 0, 0.04, 0]';
opts = odeset('RelTol',1e-2);
[t,y] = ode15s(@vdp1, tspan, y0, opts);
%%
figure(1)
plot(t,y(:,1),'b','LineWidth',2)
title('Variations of working gas pressure')
xlabel('time (Sec)')
ylabel('P (pa)')
%%
figure(2)
plot(t,y(:,2),'b','LineWidth',2)
title('Hot liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lh')
%%
figure(3)
plot(t,y(:,4),'b','LineWidth',2)
title('Cold liquid piston oscillations')
xlabel('time (Sec)')
ylabel('lc')
%%
figure(4)
plot(t,y(:,6),'b','LineWidth',2)
title('Tuning column oscillations')
xlabel('time (Sec)')
ylabel('lc')
function dydt = vdp1(~,y)
% Missing parameters:
mf = 1;
% input parameters
Dr = 0.05;
Dc = 0.05;
Dh = 0.05;
Dt = 0.09;
Lr = 0.5;
Lc = 0.5;
Lh = 0.5;
g = 9.81;
rho = 1000;
mu = 1.002e-3;
Pa = 10^5;
Tr = 30;%
Te = 100;
Tc = 20;
%%
% Dp = 0.0414;
% D0 = 0.032;
% Ds = 0.025;%
Ct = 10;
Db = 0.099;
mI2 = 0.3;%
Li = 0.5;
xp = 1;
Cf = 1;
dxp = 1;
Hf = 1;
Cfd = 1;
Kp = 2992;
Vr = (pi*(Dr/2)^2)*Lr;
Ac = pi*(Dc/2)^2;
Ah = pi*(Dh/2)^2;
% Ap = pi*(Dp/2)^2;
% A0 = pi*(D0/2)^2;
% As = pi*(Ds/2)^2;
% At = pi*(Dt/2)^2;
Ab = pi*(Db/2)^2;
At = pi*(Dt/2)^2;
%%
P = y(1);
lh = y(2);
dlh = y(3);
lc = y(4);
dlc = y(5);
lt = y(6);
dlt = y(7);
% Pm equation 59
Pm = ((Ab^(2)/(mI2+mf))+(At/(rho*(lt+Ct)))+(Ac/(rho*lc))+(Ah/(rho*lh)))^(-1)...
*((-Ab/(mI2+mf))*((rho*g*(Li+xp)-Pa)*Ab + Cf*dxp+Hf+Cfd*dxp^(2)-Kp*xp)-...
(At/(rho*lt))*(-Pa-rho*g*lt-8*mu*pi*(lt-Ct)*dlt/At)-(Ac/(rho*lc))*(-P-rho*g*lc-8*mu*pi*lc*dlc/Ac)...
-(Ah/(rho*lh))*(P-rho*g*lh-8*pi*mu*lh*dlh/Ah));
%%
dydt = zeros(9,1);
Vc = Ac*(Lc - lc);
Ve = Ah*(Lh - lh);
dydt(1) = (-P/((Vr/Tr)+(Vc/Tc)+(Ve/Te)))*((1/Tc)*(-Ac*dlc)+(1/Te)*(-Ah*dlh));
dydt(2) = y(3);
dydt(3) = (1/(rho*lh))*((Pm - P) - rho*g*lh - 8*pi*mu*(lh/Ah)*dlh);
dydt(4) = y(5);
dydt(5) = (1/(rho*lc))*((Pm-P)-rho*g*lc-8*pi*mu*lc*dlc/Ac);
dydt(6) = y(7);
dydt(7) = (1/(rho*(lt+Ct)))*((Pm-Pa)-rho*g*lt-8*mu*pi*(lt+Ct)*dlt/At);
end
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!