Runge Kutta 4 method to solve second order ODE

9 Ansichten (letzte 30 Tage)
Alina Li
Alina Li am 14 Nov. 2020
Kommentiert: Bruce Taylor am 22 Okt. 2023
Please help. I have been stuck at it for a while:
I am trying to solve a second order differential equation where U_dot= V and V_dot = d*U-c*U^3-b*V+a*sin(w*t)
Now I made the code (analytical part is meant for double checking myself, ignore it). My code gives an error saying "index exceeds array bounds". The loop refuses to accept anything other than for i = 1:1. How can I run this loop with Runge Kutta calculations?
Thank you!
w = 1.3;
dt = 2*pi/(w*100);
a= 0.25;
b=0.1;
c=1;
d = 1;
x0=1;
y0=0;
t=0:dt:5000;
transient = 4250;
tran_str= 300;
% %analytical
% w0=sqrt(-d);
% A=sqrt(x0^2+(y0/w0)^2);
% phi = atan(x0*w0/y0);
% xan = A*sin(w0*t+phi);
% yan = A*w0*cos(w0*t+phi);
%RK4
f1 = @(t,x,y) y;
f2 = @(t,x,y) d*x-c*x^3-b*y+a*sin(w*t);
h=dt
for i=1:length(t-1)
t(i+1) = t(i)+i*h;
k1x = f1(t(i),x0(i),y0(i));
k2x = f2(t(i)+0.5*h,x0(i)+0.5*k1y*h, y0(i)+0.5*k1y*h);
k3x = f2(t(i)+0.5*h,x0(i)+0.5*k2y*h, y0(i)+0.5*k2y*h);
k4x = f2(t(i)+0.5*h,x0(i)+0.5*k3y*h, y0(i)+0.5*k3y*h);
k1y = f2(t(i),x0(i),y0(i));
k2y = f2(t(i)+0.5*h,x0(i)+0.5*k1y*h, y0(i)+0.5*k1y*h);
k3y = f2(t(i)+0.5*h,x0(i)+0.5*k2y*h, y0(i)+0.5*k2y*h);
k4y = f2(t(i)+0.5*h,x0(i)+0.5*k3y*h, y0(i)+0.5*k3y*h);
y(i+1) = y0(i)+1/6*(k1y+2*k2y+2*k3y+k4y);
end
  3 Kommentare
Alina Li
Alina Li am 14 Nov. 2020
Thank you for the question, it actually made me realize that I should have included it. I edited the code above. Unfrotunately, the same error persists.
Haya M
Haya M am 15 Nov. 2020
What do you mean by k1y in k2x and check the rest as well.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Alan Stevens
Alan Stevens am 15 Nov. 2020
Bearbeitet: Alan Stevens am 15 Nov. 2020
Your integration loop is mightily scrambled. It should be like this
x(1) = x0;
y(1) = y0;
for i=1:length(t)-1
t(i+1) = i*h;
k1x = f1(t(i),x(i),y(i));
k1y = f2(t(i),x(i),y(i));
k2x = f1(t(i)+0.5*h,x(i)+0.5*k1x*h, y(i)+0.5*k1y*h);
k2y = f2(t(i)+0.5*h,x(i)+0.5*k1x*h, y(i)+0.5*k1y*h);
k3x = f1(t(i)+0.5*h,x(i)+0.5*k2x*h, y(i)+0.5*k2y*h);
k3y = f2(t(i)+0.5*h,x(i)+0.5*k2x*h, y(i)+0.5*k2y*h);
k4x = f1(t(i)+h,x(i)+k3x*h, y(i)+k3y*h);
k4y = f2(t(i)+h,x(i)+k3x*h, y(i)+k3y*h);
x(i+1) = x(i)+1/6*(k1x+2*k2x+2*k3x+k4x)*h;
y(i+1) = y(i)+1/6*(k1y+2*k2y+2*k3y+k4y)*h;
end
(However, I don't think your analytical solution is the solution to your equations.)
  1 Kommentar
Bruce Taylor
Bruce Taylor am 22 Okt. 2023
This is a beautiful solution. I modified it to analyze a series R-L-C circuit and compared the result to the exact solution...perfect match.
Bruce Taylor

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by