How to use implicit model functions in Curve fitting toolbox
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
kdb acml
am 11 Nov. 2020
Bearbeitet: kdb acml
am 16 Nov. 2020
I am trying to fit some data on a custom implicit equation (2nd degree polynomial in x and y; see below) and obtain the coefficients (a,b and c) for that data.
But the cftool does not have an implicit option in its custom equation tab.
Any help is appreciated on the topic. I understand that people are coding it in some ways and i would really appriciate if a GUI based answer is also possible.
2 Kommentare
Matt J
am 12 Nov. 2020
You need some sort of constraint on a,b,c because otherwise a trivial solution is just a=b=c=0.
Akzeptierte Antwort
Ameer Hamza
am 11 Nov. 2020
Bearbeitet: Ameer Hamza
am 11 Nov. 2020
You can consider the equation like this
where
. Then define x, y, and z in MATLAB code like this
x; y; % your data pounts
z = zeros(size(x));
and then use cftool() with x, y, and z variables. And in custom equation, write
a*x^2+b*y^2+c*y
7 Kommentare
Ameer Hamza
am 12 Nov. 2020
If you load the data like this
data = load('new.txt');
x = data(:,1);
y = data(:,2);
z = zeros(size(x));
and use cftool to fit the model, then export the model to base workspace and then run the following
f = @(x,y) fittedmodel.a/fittedmodel.b*x.^2 + y.^2 + fittedmodel.c/fittedmodel.b*y;
fimplicit(f, [min(x), max(x) min(y) 0])
hold on
plot(x, y, '+')
You will get

The actual fit will depend on the initial condition.
Weitere Antworten (2)
Matt J
am 12 Nov. 2020
Bearbeitet: Matt J
am 13 Nov. 2020
An analytical solution is possible here,
[x,y]=deal(x(:),y(:));
A=[x.^2,y.^2,y];
s=std(A,1);
[~,~,V]=svd(A./s,0);
abc=V(:,end)./s(:);
abc=abc/abc(end);
6 Kommentare
Bruno Luong
am 13 Nov. 2020
Bearbeitet: Bruno Luong
am 13 Nov. 2020
Better indeed. I would argue this is even "more" correct (increase the noise s to 0.03 you'll see the effect, full code tlsqr.m attached).
[x,y]=deal(x(:),y(:));
A=[x.^2,y.^2,y];
C=cov(A);
S=sqrtm(C);
S=diag(diag(S));
% your method is equivalent to use
% S=diag(std(A)) % or
% S=diag(sqrt(diag(C)));
[~,~,V]=svd(A/S,0);
abc=S\V(:,end);
abc=abc/abc(end);
The method is still bother me great time, since the scalling affects both signal spread and noise spread. The noise in A is no longer Gaussian since it's not linear. etc...

Bruno Luong
am 12 Nov. 2020
Bearbeitet: Bruno Luong
am 12 Nov. 2020
Why not just solving using the linear algebra, seem this straighforward method does the job
xy = load('new.txt');
x = xy(:,1);
y = xy(:,2);
P = -([x.^2,y.^2] \ y);
a = P(1);
b = P(2);
c = 1;
% Plot
xi = linspace(min(x),max(x));
yi = linspace(min(y),max(y)).';
z = reshape(a*xi.^2+b*yi.^2+c*yi,[length(yi) length(xi)]);
close all
figure
contour(xi,yi,z,[0 0],'r');
hold on
plot(x,y,'.')
legend('fit','data')

5 Kommentare
Bruno Luong
am 13 Nov. 2020
Bearbeitet: Bruno Luong
am 13 Nov. 2020
Vast topic. All literature of regression deals somewhat with noise issue. For starter you can look at noise covariance matrix (normalized Gaussian noise), regularization technique: art of find the right balance between bias - systematic error - and statistics error - which depends on the inverse of the Hessian at the minimum, meaning the way to formulate the objective function to achieve the regression goal.
In practice noise sometime is not Gaussian, and it's a big mess even at the theoretical level.
If you really want to fire againts bias, you need first to understand/characterize your measurement noise. If you start to says "I do not know what noice characteristics means" then you have a long long way to go.
The total-variation-lsq try to deal with problem where the error is affected both measurement query points and values, where Matt try to inspire from by using SVD, but his nice idea - sorry to say - is flawed for various reasons.
EDIT: Matt tlsq method is much better after data "normalization".
Siehe auch
Kategorien
Mehr zu Linear Least Squares finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
