Filter löschen
Filter löschen

Plotting asymptotic limits, interpolation

2 Ansichten (letzte 30 Tage)
pxg882
pxg882 am 21 Feb. 2013
Hi, I'm plotting the following set of data
x = [0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0];
y = [1.7764 1.4849 1.3076 1.1857 1.0957 1.0257 0.9698 0.9235 0.8845];
cs = spline(x,y);
xx = linspace(0.6,1,401);
yy = ppval(cs,xx);
plot(x,y,'o',xx,yy,'-');
axis([0.6 1 0.8 1.8])
xlabel('n')
ylabel('$-H(\eta_{\infty})$','interpreter','latex')
legend('data','spline')
However, I know that for x=0.5 the data set tends asymptotically towards the y-axis. Is there a way I can add this into the plot whilst preserving the 'shape' of the interpolating spline? I've tried approximating this by adding in the point x=0.5 with say y=100, however the curve is not longer smooth.
Any help would be great.
Thanks.

Antworten (1)

José-Luis
José-Luis am 21 Feb. 2013
Let Matlab decide how to make your plot look smooth:
myFun = @(x) ppval(cs,x)
fplot(myFun,[0.5 1])
  2 Kommentare
pxg882
pxg882 am 21 Feb. 2013
This does produce a smooth plot but it doesn't encapsulate the asymptotic behaviour of the function as x tends towards 0.5. Is there a way to force Matlab into taking behaviour into account?
José-Luis
José-Luis am 21 Feb. 2013
Bearbeitet: José-Luis am 21 Feb. 2013
What makes you think it is asymptotic? A cubic function never evaluates to infinity. Every piece in the spline is a cubic function. You would need to define the function you are thinking of for the [0.5 0.6] interval.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by