Help with coding (integral)
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
leyla ahmed
am 10 Nov. 2020
Beantwortet: Stephan
am 10 Nov. 2020
How can i solve this integral ((1/5*x)+1)*sqrt(1+exp(-2x)) by using Simpsons method? The upper limit is 1 and the lower limit is 0. I know how to solve it, but i keep getting these errors. It says "Invalid expression. Check for missin multiplication operator...".
3 Kommentare
Akzeptierte Antwort
Stephan
am 10 Nov. 2020
Typo in line 18 - use sum_f instead of sum_ f
a = 0;
b = 1;
n = 20;
m = n/2;
dx = (b-a)/n;
x = a;
sum_f = ((1/5*a)+1).*sqrt(1+exp(-2*a));
eqn = @(x) ((1/5*x)+1).*sqrt(1+exp(-2*x));
for i = 1:m-1
x = x + dx;
sum_f = sum_f + 4*((1/5*x)+1).*sqrt(1+exp(-2*x));
x = x + dx;
sum_f = sum_f + 2*((1/5*x)+1).*sqrt(1+exp(-2*x));
end
x = x + dx;
sum_f = sum_f + 4*((1/5*x)+1).*sqrt(1+exp(-2*x));
sum_f = sum_f + b/((1/5*b)+1).*sqrt(1+exp(-2*b));
0 Kommentare
Weitere Antworten (1)
David Hill
am 10 Nov. 2020
a = 0; b = 1; n = 20;
h = (b-a)/n;
x = linspace(a,b,n+1);
f = ((1/5*x)+1).*sqrt(1+exp(-2*x));
F = h/3*(f(1)+2*sum(f(2:2:end-1))+4*sum(f(1:2:end-1))+f(end));
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!