Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
facing problem to function calling
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
function [x,y1]=exlicit(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
y1(i+1)=y1(i)+h*f1(x(i),y1(i));
end
end
%heun's method
function [x,y1]=heun(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
ynew=y1(i)+h*(f1(x(i),y1(i)));
y1(i+1)=y1(i)+(h/2)*(f1(x(i+1),y1(i))+h*f1(x(i+1),ynew));
end
end
%euler implicit method
function [x,y1]=implicit(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
ynew=y1(i)+h*(f1(x(i),y1(i)));
y1(i+1)=y1(i)+h*f1(x(i+1),ynew);
end
end
%Runge Kutta 4th order method:
function [x,y1]=Runge(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
k1=f1(x(i),y1(i));
y1(i+1)=y1(i)+(h*k1)
end
end
function dy =f1(x,y1)
d=50;
c1=-1-d^2/(d^2+1);
x=0:0.01:10;
dy=c1*exp(-d*x)+d*sin(x)/(d^2+1)+d^2*cos(x)/(d^2+1);
end
%plot
%call function
[x2,y2]=exlicit(f1);
[x3,y3]=heun(f1);
[x4,y4]=implicit(f1);
[x5,y5]=Runge(f1);
plot(x2,y2,'g-',x3,y3,'b',x4,y4,'m-',x5,y5,'r')
hold on
end
3 Kommentare
Rik
am 9 Nov. 2020
Well, you will first have to fix what is inside a function and what is outside of it. Pay attention to m-lint: those squiggly lines under your code should all be gone. It will give you advice how to solve them.
Antworten (0)
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!