nonlinear fit for a sum function
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dor Bettran
am 9 Nov. 2020
Kommentiert: Dor Bettran
am 9 Nov. 2020
i want to fit the following function
to a given data i have.
%DATA
X=linspace(1,20,100)';
Y=2*exp(0.13*X)+11.2 + 4*exp(0.13*X)+11.2 + 7*exp(0.13*X)+11.2; %consider it as a given data
n=[2 4 7]; %given
b=[0.1 11]; %initial guess
i used fitnlm as follows:
modelfun=@(b,x) 2.*exp(b(1).*x)+b(2) + 4.*exp(b(1).*x)+b(2) + 7.*exp(b(1).*x)+b(2);
beta = fitnlm(X,Y,modelfun,b)
Now, i need help with writing 'modelfun' in a nondirect way because the real problem i have is (
) ,
and obviously it is not practical to write it directly as above.
0 Kommentare
Akzeptierte Antwort
Ameer Hamza
am 9 Nov. 2020
This is the general way to write this problem
%DATA
X=linspace(1,20,100)';
Y=2*exp(0.13*X)+11.2 + 4*exp(0.13*X)+11.2 + 7*exp(0.13*X)+11.2; %consider it as a given data
n=[2 4 7]; %given
b=[0.1 11]; %initial guess
m = numel(n);
modelfun = @(b,x) sum(n).*exp(b(1).*x)+m*b(2);
beta = fitnlm(X,Y,modelfun,b)
3 Kommentare
Ameer Hamza
am 9 Nov. 2020
The solution will change from model to model, for example, for the model in your comment, following will work
modelfun = @(b,x) sum(exp((n-m)/b(1).*x), 2);
This uses some automatic-array expansion trick which might be difficult to understand at the beginning, so for a general solution, you can just write a for-loop.
fun = @(b,x) modelfun(b,x,n,m);
beta = fitnlm(X,Y, fun,b)
function y = modelfun(b,x,n,m)
y = zeros(size(x));
for i = 1:numel(n)
y = y + exp(n(i)-m(i)/b(1).*x);
end
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!