Undefined function or variable 'tm'. Error in saps_score (line 64) tm=cell2mat(tm);

1 Ansicht (letzte 30 Tage)
function [SAPS_SCORE]=saps_score(varargin)
% [SAPS_SCORE]=saps_score(tm,category,val,truncated)
%
% Calculates SAPS scores. Variables are:
%
%tm - (Nx1 Cell Array) Cell array containing time of measurement
%category- (Nx1 Cell Array) Cell array containing type (category)
% measurement
%value - (Nx1 Cell Array) Cell array containing value of measurement
%truncated - (Logical) Optional flag, if true, will attempt to calculate
% "truncated" SAPS even if some of the input variables are
% missing. Default is 0 (false) .
% SAP_SCORE - (Scalar) Value between 0 and 56 representing the severity of
% the patient's status (higher scores are worse). A NaN
% value is returned along with a warning message if the SAPS
% score cannot be calculated.
%
% Written by Ikaro Silva, 2012
%
% Version 1.0
%
% Reference:
% Gall et al, "A simplified acute physiology score for ICU patients",
% Critical Care Medicine (1984), 12(11).
truncated=0;
inputs={'tm','category','val','truncated'};
for n=1:nargin
if(~isempty(varargin{n}))
eval([inputs{n} '=varargin{n};'])
end
end
%SAPS variable names
SAPS={{'Age'},{'HR'},{'SysABP','NISysABP'},{'Temp'},...
{'RespRate','MechVent'},{'Urine'},{'BUN'},{'HCT'},...
{'WBC'},{'Glucose'},{'K'},{'Na'},{'HCO3'},{'GCS'}};
MX_SAPS=56; %Max SAPS value
%Convert SAPS info into tables [min range, max range, SAPS score;...]
%Also convert the units in the table to match the units of the data
Age=[0,45,0;46,55,1;56,65,2;66,75,3;76,200,4];
HR=[70,109,0;55,69,2;110,139,2;40,54,3;140,179,3;180,250,4;10,39,4];
SysABP=[80,149,0;55,79,2;150,189,2;190,300,4;20,54,4];
Temp=[36,38.4,0;34,35.9,1;38.5,38.9,1;32,33.9,2;30,31.9,3;39,40.9,3;41,45,4;15,29.9,4];
RespRate=[12,24,0;10,11,1;25,34,1;6,9,2;35,49,3;2,5,4;50,80,4];
MechVent=49; %Equivalent to a RespRate that will yield a SAPS value of 3
Urine=[5,20,0.002;3.5,4.999,0.001;0.7,3.499,0;0.5,0.699,0.002;0.2,0.499,0.003;0,0.199,0.004].*1000; %Convert from L to mL
BUN=[55,100;36,54.9;29,35.9;7.5,28.9;3.5,7.4;1,3.4].*2.8; %Convert to mg/dL
BUN(:,3)=[4;3;2;1;0;1];
BUN(:,1)=[BUN(2:end,2)+eps;BUN(end,1)];
HCT=[60,80,4;50,59.9,2;46,49.9,1;30,45.9,0;20,29.9,2;5,19.9,4];
WBC=[40,200,4;20,39.9,2;15,19.9,1;3,14.9,0;1,2.9,2;0.100,0.9,4];
Glucose=[44.5,1000;27.8,44.4;14,27.7;3.9,13.9;2.8,3.8;1.6,2.7;0.5,1.5].*18;%Convert to mg/dL
Glucose(:,3)=[4;3;1;0;2;3;4];
Glucose(:,1)=[Glucose(2:end,2)+eps;Glucose(end,1)];
K=[7,20,4;6,6.9,3;5.5,5.9,2;3.5,5.4,0;3,3.4,1;2.5,2.9,2;0.5,2.4,4];
Na=[180,200,4;161,179,3;156,160,2;151,155,1;130,150,0;120,129,2;110,119,3;50,109,4];
HCO3=[40,100,4;30,39.9,1;20,29.9,0;10,19.9,1;5,9.9,3;2,4.9,4];
GCS=[13,15,0;10,12,1;7,9,2;4,6,3;3,3,4];
%Only use data for the first 24 hrs (standard SAPS)
tm=cell2mat(tm);
fr_data=find(str2num(tm(:,1:2))<24);
val=val(fr_data);
tm=tm(fr_data);
category=category(fr_data);
%Loop through all SAPS variables, adding risk points to SAPS_SCORE according to their tables
SAPS_SCORE=NaN;
for s=1:length(SAPS)
%Get data for the selected category only (If more than one name exist for the variables, merge data)
saps_var=SAPS{s};
sig_ind= val.*0;
eval(['table=' regexprep(saps_var{1},' ','_') ';'])
for i=1:length(saps_var)
sig_ind=sig_ind | strcmp(saps_var(i),category);
end
tmp_data=val(sig_ind);
if(strcmp(saps_var{1},'RespRate'))
%For Respiration, check Mechanical Ventilation flag
%If subject is on ventillation, this is equivalent to having a
%RespRate that will yield a SAPS value of 3
tmp_category=category(sig_ind);
mech_vent_ind=find(strcmp(saps_var(2),tmp_category)==1);
if(~isempty(mech_vent_ind) && any(mech_vent_ind))
tmp_data=MechVent;
end
end
if(strcmp(saps_var{1},'Urine'))
%For Urine output, get cumulative over 24hrs
tmp_data=sum(tmp_data);
end
%Set out of bound values to NaN
tmp_data(tmp_data < min(table(:,1)))=NaN;
tmp_data(tmp_data > max(table(:,2)))=NaN;
%Get the lowest and highest values for the measured variable
if(all(isnan(tmp_data)) || isempty(tmp_data))
if(~truncated)
warning(['No SAPS score for variable ' saps_var{:} '... exiting.'])
SAPS_SCORE=NaN;
break
else
warning(['No variable ' saps_var{:} '... attempting truncated SAPS.'])
end
else
mn=nanmin(tmp_data);
mn_saps_ind=find( ( mn(1) >= table(:,1) & mn(1) <= table(:,2) ) ==1);
mn_saps_val=table(mn_saps_ind,3);
mx=nanmax(tmp_data);
mx_saps_ind=find( ( mx(1) >= table(:,1) & mx(1) <= table(:,2) ) ==1);
mx_saps_val=table(mx_saps_ind,3);
%Add worst case scenario to SAPS SCORE
if(isnan(SAPS_SCORE))
SAPS_SCORE= nanmax(mn_saps_val,mx_saps_val);
else
SAPS_SCORE= SAPS_SCORE + nanmax(mn_saps_val,mx_saps_val);
end
end
end
  5 Kommentare
Image Analyst
Image Analyst am 9 Nov. 2020
When you did this
>> SAPS_SCORE = saps_score(blah, blah, blah, blah);
what did you pass in for the blah's?
Fawad Ahmad
Fawad Ahmad am 10 Nov. 2020
%Calculate SAPS SCORE
truncated=1; %Attempt to calculate SAPS even if some variables are missing
[SAPS_SCORE]=saps_score(time,param,value,truncated);

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Time Series Events finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by