Approximating Definite Integrals as Sums
34 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Luqman Saleem
am 2 Nov. 2020
Kommentiert: Luqman Saleem
am 3 Nov. 2020
I have a function that I want to integrate over and . I know the answer of this integration is . When I use function, I get the correct result but when I try to evaluate this integral using loops, my result is always . I increased points to but still get the same result. By using loops for integration. The sum approximation is . I am following a research paper which claims that they used loops with gaussian meshes and get as answer.
My question is why exactly I am not getting the correct result and what exactly are gaussian meshes? The function and the code runner.m that I am using are given below:
runner.m
%runner.m
clear; clc;
NBZ = 500; %number of x and y points. total points = NBZ^2
JNN = 0; %a parameter
a = 1;
% x and y limits... and x and y points.
xmin = -2*pi/(3*a);
xmax = 4*pi/(3*a);
ymin = -2*pi/(sqrt(3)*a);
ymax = 2*pi/(sqrt(3)*a);
dx = (xmax-xmin)/(NBZ-1); %Delta x
dy = dx; %Delta y
xs = xmin:dx:xmax; %array of x points
ys = ymin:dy:ymax; %array of y points
dsum= 0;
for ny = 1:NBZ
y = ys(ny);
for nx = 1:NBZ
x = xs(nx);
out = F(x,y,JNN);
dsum = dsum + out*dx*dy;
end
end
answer = dsum
%it gives: answer = -0.6778
F(x,y)
function out = F(x,y,JNN)
JN = 4;
D = 1;
s = 1;
h11 = 0;
h12 = -(JN+1i*D)*s*(1+exp(1i*(-x-sqrt(3)*y)/2))...
-JNN*s*(exp(1i*x)+exp(1i*(+x-sqrt(3)*y)/2));
h13 = -(JN-1i*D)*s*(1+exp(1i*(+x-sqrt(3)*y)/2))...
-JNN*s*(exp(1i*x)+exp(1i*(-x-sqrt(3)*y)/2));
h23 = -(JN+1i*D)*s*(1+exp(1i*x))-2*JNN*s*exp(1i*x/2)*cos(sqrt(3)/2*y);
h = [h11 h12 h13;
conj(h12) h11 h23;
conj(h13) conj(h23) h11];
[evecs, evals] = eig(h);
v1 = evecs(:,1);
v2 = evecs(:,2);
v3 = evecs(:,3);
e1 = evals(1,1);
e2 = evals(2,2);
e3 = evals(3,3);
X = [ 0, - exp(- (x*1i)/2 - (3^(1/2)*y*1i)/2)*(1/2 - 2i) - JNN*(exp(x*1i)*1i + (exp((x*1i)/2 - (3^(1/2)*y*1i)/2)*1i)/2), - exp((x*1i)/2 - (3^(1/2)*y*1i)/2)*(1/2 + 2i) - JNN*(exp(x*1i)*1i - (exp(- (x*1i)/2 - (3^(1/2)*y*1i)/2)*1i)/2)
- exp((conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*(1/2 + 2i) + JNN*((exp(- (conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*1i)/2 + exp(-conj(x)*1i)*1i), 0, exp(x*1i)*(1 - 4i) - JNN*exp((x*1i)/2)*cos((3^(1/2)*y)/2)*1i
- exp(- (conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*(1/2 - 2i) - JNN*((exp((conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*1i)/2 - exp(-conj(x)*1i)*1i), exp(-conj(x)*1i)*(1 + 4i) + JNN*exp(-(conj(x)*1i)/2)*cos((3^(1/2)*conj(y))/2)*1i, 0];
Y = [ 0, - 3^(1/2)*exp(- (x*1i)/2 - (3^(1/2)*y*1i)/2)*(1/2 - 2i) + (3^(1/2)*JNN*exp((x*1i)/2 - (3^(1/2)*y*1i)/2)*1i)/2, 3^(1/2)*exp((x*1i)/2 - (3^(1/2)*y*1i)/2)*(1/2 + 2i) + (3^(1/2)*JNN*exp(- (x*1i)/2 - (3^(1/2)*y*1i)/2)*1i)/2
- 3^(1/2)*exp((conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*(1/2 + 2i) - (3^(1/2)*JNN*exp(- (conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*1i)/2, 0, 3^(1/2)*JNN*exp((x*1i)/2)*sin((3^(1/2)*y)/2)
3^(1/2)*exp(- (conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*(1/2 - 2i) - (3^(1/2)*JNN*exp((conj(x)*1i)/2 + (3^(1/2)*conj(y)*1i)/2)*1i)/2, 3^(1/2)*JNN*sin((3^(1/2)*conj(y))/2)*exp(-(conj(x)*1i)/2), 0];
o1a = ( ((v2'*X*v1)*(v1'*Y*v2)) - ((v2'*Y*v1)*(v1'*X*v2)))/((e2-e1)^2);
o1b = ( ((v3'*X*v1)*(v1'*Y*v3)) - ((v3'*Y*v1)*(v1'*X*v3)))/((e3-e1)^2);
o1 = 1i*(o1a+o1b);
out = real(o1/(2*pi));
end
0 Kommentare
Akzeptierte Antwort
Matt J
am 2 Nov. 2020
Bearbeitet: Matt J
am 2 Nov. 2020
I don't know what gaussian meshes are, but the Riemann sum works with a just few fixes to the way the sampling is set up:
NBZ = 600; %number of x and y points. total points = NBZ^2
JNN = 0; %a parameter
a = 1;
% x and y limits... and x and y points.
xmin = -2*pi/(3*a);
xmax = 4*pi/(3*a);
ymin = -2*pi/(sqrt(3)*a);
ymax = 2*pi/(sqrt(3)*a);
xs = linspace(xmin,xmax,NBZ+1); %array of x points
ys = linspace(ymin,ymax,NBZ+1); %array of y points
xs(end)=[]; ys(end)=[];
dx=xs(2)-xs(1);
dy=ys(2)-ys(1);
dsum= 0;
for ny = 1:NBZ
y = ys(ny);
for nx = 1:NBZ
x = xs(nx);
out = F(x,y,JNN);
dsum = dsum + out;
end
end
answer = dsum*dx*dy
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!