How to find the x and y values at the max of a curve?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Will Jeter
am 27 Okt. 2020
Beantwortet: Walter Roberson
am 27 Okt. 2020
Im trying to find the max Concentration for the curve R and its corresponding time. The max function doesn't seem to work when I tried it.
function CBE350HW10PT1
tspan = [0,2000];
conc = [0.02,0,0];
[t, c] = ode45(@odefun3,tspan,conc);
figure
plot(t,c)
xlabel('Time')
ylabel('Concentration')
legend('A','R','S')
end
function dCdt = odefun3(t,c)
k1 = 0.00108;
k2 = 0.00119;
k3 = 0.00159;
CA = c(1);
CR = c(2);
CS = c(3);
dCdt = zeros(3,1);
dCdt(1) = -k1*CA;
dCdt(2) = (k1*CA)-(k2*CR)-(k3*CR*CS);
dCdt(3) = (k2*CR)-(k3*CR*CS);
end
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 27 Okt. 2020
CBE350HW10PT1 %invoke the function
function CBE350HW10PT1
tspan = [0,2000];
conc = [0.02,0,0];
[t, c] = ode45(@odefun3,tspan,conc);
figure
plot(t,c)
xlabel('Time')
ylabel('Concentration')
legend('A','R','S')
[maxr, maxridx] = max(c(:,2));
maxr_t = t(maxridx);
hold on
plot(maxr_t, maxr, 'r*');
hold off
fprintf('Maximum concentration R was %g at time = %g\n', maxr, maxr_t);
end
function dCdt = odefun3(t,c)
k1 = 0.00108;
k2 = 0.00119;
k3 = 0.00159;
CA = c(1);
CR = c(2);
CS = c(3);
dCdt = zeros(3,1);
dCdt(1) = -k1*CA;
dCdt(2) = (k1*CA)-(k2*CR)-(k3*CR*CS);
dCdt(3) = (k2*CR)-(k3*CR*CS);
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Geometric Transformation and Image Registration finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
