how row 10 is Working Specific "A(i,k+1:n) " ??

1 Ansicht (letzte 30 Tage)
Raya Arafat
Raya Arafat am 26 Okt. 2020
Beantwortet: Rohit Pappu am 29 Okt. 2020
function [x,det] = gauss(A,b)
% Solves A*x = b by Gauss elimination and computes det(A).
% USAGE: [x,det] = gauss(A,b)
if size(b,2) > 1; b = b’; end % b must be column vector
n = length(b);
for k = 1:n-1 % elimination phase
for i= k+1:n
if A(i,k) ∼=0
lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);
b(i)= b(i) - lambda*b(k);
end
end
end
if nargout == 2; det = prod(diag(A)); end
for k = n:-1:1 % back substitution phase
b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);
end; x = b;

Antworten (1)

Rohit Pappu
Rohit Pappu am 29 Okt. 2020
Line no. 10 states that Update the (i)th row, (k+1)th to (n)th columns of A as follows
  • Multiply Lambda with the elements present in (k)th row, (k+1)th to (n)th columns of A to obtain a vector of dimensions (1, n-k)
  • Subtract the above resultant vector from the elements present in (i)th row, (k+1)th to (n)th columns of A to obtain a vector of dimensions (1, n-k)
  • Save the above resultant vector in (i)th row, (k+1)th to (n)th columns of A

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by