Numerical Approximation of Fisher Information Matrix

19 Ansichten (letzte 30 Tage)
Edoardo Briganti
Edoardo Briganti am 25 Okt. 2020
Kommentiert: iust am 15 Nov. 2020
Dear all,
I need to calculate the asymptotic standard errors of my maximum likelihood estimates. In order to do this, I have to calculate the Fisher Information Matrix. Analyticial derivation of it is possible, however it is a total pain of matrix algebra and matrix differentiation which I don't want to redo whenever I tweak my model and, in turn, my likelihood.
Is there a way to numerically approximate the Fisher Information matrix evaluated at my maximum likelihood estimates?
% Define Concentrated Log-Likelihood:
Log_L = @(r) log_likelihood(r,T,n,dy,d1,d2,W1,W2,X,6); % r is a vector of 2 parameters: r(1) and r(2).
% Maximum Likelihood Estimation (Constrained bivariate optimization)
options = optimoptions('fmincon','display','none');
x0 = .1 + .9*rand(1,2);
lb = [lb1,lb2];
ub = [ub1,ub2];
[sol,~,~,~,~,~,H] = fmincon(Log_L,x0,[],[],[],[],lb,ub,[],options);
% Maximum Likelihood Estimates of parameters which have been concentrated with respect to r(1) and r(2)
[~,hat_beta,hat_omega] = log_likelihood(sol,T,n,dy,d1,d2,W1,W2,X,k);
function [Log_L,beta_wls,omega] = log_likelihood(r,T,n,dy,d1,d2,W1,W2,X,k)
D1 = kron(d1,ones(n,1));
D2 = kron(d2,ones(n,1));
t1 = sum(d1);
t2 = sum(d2);
Z = dy - r(1)*D1.*(kron(eye(T),W1)*dy) - r(2)*D2.*(kron(eye(T),W2)*dy);
beta_ols = X\Z;
eps_ols = Z - X*beta_ols;
omega = diag( 1/(T-k).*sum(reshape(eps_ols,[n,T]).*reshape(eps_ols,[n,T]),2) ); % n parameters to estimate
sigma = kron(eye(T),omega);
beta_wls = ( X'*(sigma\X) )\( X'*( sigma\Z) );
eps_wls = Z - X*beta_wls;
H1 = inv(eye(n) - r(1)*W1);
H2 = inv(eye(n) - r(2)*W2);
% Concentrate (negative) log-Likelihood with respect to r(1) and r(2) (2 parameters to estimate)
Log_L = -( - T/2*log(det(omega)) - t1*log(det(H1)) ...
- t2*log(det(H2)) - 0.5*eps_wls'*(sigma\eps_wls) ) ;
end
You can find my code above. I concentrate my likelihood with respect to 2 parameters. The other parameters are contained in the vector beta_wls (total of n+6 parameters) and in the diagonal matrix omega (n variances).
Thanks in advance,
Best,
Edoardo
  1 Kommentar
iust
iust am 15 Nov. 2020
Hi,
I have the same problem and I don't understand what your codes exactly say. My system of equations are dynamic and I use Kalman filter for estimation and then Fisher info matrix becomes a little crazy. Can you help me to find the Fisher info for a dynamic system?
I just added one question, sorry.
Thanks,
Adel

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

John D'Errico
John D'Errico am 25 Okt. 2020
Bearbeitet: John D'Errico am 25 Okt. 2020
You cannot perform numerical differentiation? At the very least, you can use tools for numerical differentiation from my derivest set of tools. There is a Hessian matrix tool in there.
  1 Kommentar
Edoardo Briganti
Edoardo Briganti am 25 Okt. 2020
Bearbeitet: Edoardo Briganti am 25 Okt. 2020
Hi John,
thanks for your prompt reply. I might use your package to calculate the hessian of my log-likelihood at the values taken by the maximum likelihood estimates. However, the Fisher Information Matrix requires to take expectations of this object: .
Would not this be a problem? Would the numerical approximation of the Hessian be enough to approximate the Fisher Information Matrix?
Best,
Edoardo

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Online Estimation finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by