The weird thing is that I am actually able to pone s = 0 and x=0 to compute LapI{1,1}(s,x), but I then get the error when I implement it in the for loop
exceeded number of array elements
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello everyone,
could you please help me figure out how to fix this error? It is showing up already for B=1 and C=1
Here's the code:
clear,
% [ THIS IS test_I_analysis ]
%% PARAMETERS
H = [100 ]'; h=1 ; var = 2e5 ;
lambdaA = 1e-6 ; lambdaT = 0.15 ;
lambda = [lambdaA, lambdaA, lambdaT] ;
Sa = [4.88 9.6117 12.0810 27.304]' ; Sb = [0.429 0.1581 0.1139 0.0797]' ;
alpha = [2, 3, 3] ;
alpha= [2.37 3 3]
tau = 0.31623 ; sigma_n2 = 10^-13 ;
p = [1.585, 1.585, 10] ;
eta = [0.9972 0.9943 1]
xi = eta .* p ;
m = [2 1 1] ; % Shape parameters for Nakagami fadings
Ru=600
R= 500 ;
for A=1:2
dd{A,3} = @(d) (xi(3) / xi(A))^(1/alpha(3)) * d.^(alpha(A) / alpha(3)) ;
dd{3,A} = @(d) ( (xi(A) / xi(3))^(1/alpha(A)) * d.^(alpha(3) / alpha(A)) ) .* ( d>=dd{A,3}(H) ) ...
+ H .* ( d<dd{A,3}(H) ) ;
end
dd{2,1} = @(d) (xi(1) / xi(2))^(1/alpha(1)) * d.^(alpha(2) / alpha(1)) ;
dd{1,2} = @(d) ( (xi(2) / xi(1))^(1/alpha(2)) * d.^(alpha(1) / alpha(2)) ) .* ( d>=dd{2,1}(H) ) ...
+ H .* (d<dd{2,1}(H)) ;
d = @(z) sqrt(z.^2 + H^2) ;
for C = 1:3
dd{C,C} = @(z) z ;
for B = 1:3
D{B,C} = @(z) sqrt( dd{B,C}(d(z)).^2 - H^2 ) ;
D{B,3} = @(z) dd{B,3}(d(z)) ;
end
D{3,C} = @(z) sqrt(dd{3,C}(z).^2 - H^2) ;
D{C,C} = @(z) z ;
end
xm = @(Beta) Ru(1)*cos(Beta) - sqrt(R^2 - Ru(1)^2*sin(Beta).^2) ;
BetaX = asin(R/Ru(1)) ;
for u = 1:2
xX{u} = @(Beta) Ru(u)*cos(Beta) + sqrt( R^2 - (Ru(u)*sin(Beta)).^2 ) ;
Betai{u} = @(z) real( (z>=0).*acos( (z.^2 + Ru(u)^2 - R^2) ./ ( (z>0)*2*z*Ru(u) + (z==0)) ) ) ;
end
PLoS = @(z) 1 ./ (1+Sa(1)*exp( -Sb(1)*(180/pi*atan(H./z)-Sa(1)) ) ) ;
integrandK{1} = @(z) z ./ (1+Sa(1)*exp( -Sb(1)*(180/pi*atan(H./z)-Sa(1)) ) ) ;
integrandK{2} = @(z) z .* (1 - 1/(1+Sa(1)*exp( -Sb(1)*(180/pi*atan(H./z)-Sa(1)) ) ) ) ;
for A=1:2
I_{A} = @(s,z) (1 - (m(A)/(m(A) + s .* xi(A) .* (d(z)).^-alpha(A)) ).^m(A) ) .* integrandK{A}(z) ;
for B = 1:3
LapI{B,A} = @(s,x) exp(-2*pi*lambda(A) * integral(@(z) I_{A}(s, z), D{B,A}(x),Ru(u)-R,'ArrayValued',1) ) ...
.* exp(lambda(A)*integral(@(Beta) integral(@(z) I_{A}(s,z), xm(Beta),xX{1}(Beta),'ArrayValued',1), -BetaX,BetaX,'ArrayValued',1 ) ) ;
LapBC{B,A,1} = @(s,x) LapI{B,A}(s, x) .*(Ru(1)-R>D{B,A}(x)) ;
end
end
for u = 1:length(Ru)
r2{u} = @(Beta,z) Ru(u)^2 + z.^2 - 2*Ru(u)*z.*cos(Beta) ;
I_T{u} = @(Beta,s,z) exp(-r2{u}(Beta,z)./(2*var)) .* (1-(m(3)/(m(3)+s.*xi(3).*z.^-alpha(3))).^m(3)) .* z ;
for B=1:3
LapBC{B,3,u} = @(s,x) exp(-lambda(3)/sqrt(2*pi*var) * integral(@(z) integral(@(Beta) I_T{u}(Beta,s,z), 0,2*pi,'ArrayValued',1), D{B,3}(x), Ru(u)+R,'ArrayValued',1) ) ;
LapB{B,u} = @(s,x) LapBC{B,1,u}(s,x) .* LapBC{B,2,u}(s,x) .* LapBC{B,3,u}(s,x) ;
end
end
% [THIS IS test_I]
u=1;
DsI = [0 0 0] ;
xLapI = zeros(3);
LapBC_ = {1 1 1; 1 1 1; 1 1 1}
for B=1:2
for C = 1:2
LapBC_{B,C} = LapBC{B,C,u}(tau/xi(B)*DsI(B)^alpha(B), xLapI(B,C)) ;
end
end
Antworten (1)
Stephen23
am 22 Okt. 2020
Ru is scalar, but in multiple locations you try to access Ru(2), e.g.:
for u = 1:2
xX{u} = @(Beta) Ru(u)*cos(Beta) + sqrt( R^2 - (Ru(u)*sin(Beta)).^2 ) ;
% ^^^^^ ^^^^^
and
LapI{B,A} = @(s,x) exp(-2*pi*lambda(A) * integral(@(z) I_{A}(s, z), D{B,A}(x),Ru(u)-R,'ArrayValued',1) ) ...
% ^^^^^
2 Kommentare
Stephen23
am 22 Okt. 2020
Funnily enough I used Octave, because it gives an error message which names the exact variable related to the error:
̀error: Ru(2): out of bound 1
error: called from
temp0>@<anonymous> at line 56 column 23
temp0>@<anonymous> at line 58 column 39
temp0 at line 78 column 17
The MATLAB Editor is great for most debugging, but for cases like this just the line number is not enough.
Siehe auch
Kategorien
Mehr zu Point Cloud Processing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!