finding classifier performance in MATLAB

12 Ansichten (letzte 30 Tage)
Ramya Mohan
Ramya Mohan am 4 Feb. 2013
Bearbeitet: Walter Roberson am 14 Nov. 2016
I want to classify the breast cancer dataset using SVM.
I divide the 569 instances into 5 sets of data and groups, then use classperf function to compute the performance, but I don't know what arguments are to be given in classperf function. Pls help me.
============================================================
clc;clf;clear all;close all;
data=xlsread('DATACANCER.XLSX');
load clasy;
i=24;
j=25;
data = [data(:,i), data(:,j)];
A1= data(1:113,:);A2=data(114:226,:);A3=data(227:340,:);A4=data(341:454,:);A5=data(455:569,:);
groups = ismember(species,'B');
[train, test] = crossvalind('holdOut',groups,0.2);
G1=groups(1:113,:);G2=groups(114:226,:);G3=groups(227:340,:);G4=groups(341:454,:);G5=groups(455:569,:);
cp = classperf(groups);
figure
svmStruct = svmtrain(A1,G1,'showplot',true);
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
classes = svmclassify(svmStruct,A2,'showplot',true);
classperf(cp,classes,----);<--------HERE IS MY DOUBT
ans1=cp.CorrectRate*100;
disp(ans1);
cp
figure
svmStruct = svmtrain(A2,G2,'showplot',true);
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
classes = svmclassify(svmStruct,A3,'showplot',true);
classperf(cp,classes,----);<--------HERE IS MY DOUBT
ans2=cp.CorrectRate*100;
disp(ans2);
cp
figure
svmStruct = svmtrain(A3,G3,'showplot',true);
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
classes = svmclassify(svmStruct,A4,'showplot',true);
classperf(cp,classes,--------);<--------HERE IS MY DOUBT
ans3=cp.CorrectRate*100;
disp(ans3);
cp
figure
svmStruct = svmtrain(A4,G4,'showplot',true);
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
classes = svmclassify(svmStruct,A5,'showplot',true);
classperf(cp,classes,-------);<--------HERE IS MY DOUBT
ans4=cp.CorrectRate*100;
disp(ans4);
cp
figure
svmStruct = svmtrain(A5,G5,'showplot',true);
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
classes = svmclassify(svmStruct,A1,'showplot',true);
classperf(cp,classes,-------);<--------HERE IS MY DOUBT
ans5=cp.CorrectRate*100;
disp(ans5);
cp

Antworten (0)

Kategorien

Mehr zu Biotech and Pharmaceutical finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by