3d Plot of a function
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
student_md
am 21 Okt. 2020
Kommentiert: Walter Roberson
am 26 Okt. 2020
Dear there,
I have a piecewise function u(x,t) as following code. I want to plot u(x,t) on the region (x,t) ∈ [-1,1]x[-2,2] by using the contour surface plot as the link
Could you help me please?
Thanks
clc;
clear all;
syms x t
t1 = exp(x);
t21 = -5 .* t;
t3 = exp(t21);
t5 = exp((1 + t21));
t4 = ((0 <= t & t <= 1/2) .* 1.73205);
t5 = ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597));
t6 = ((1/2 <= t & t <= 1) .* 1.73205);
t7 = ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
t6 = (1 + t5).^2;
t2 = 1 ./ t6;
t7 = (1 + t3).^2;
t3 = 1 ./ t7;
t8 = -0.00399646;
t9 = 0.00922094;
t10 = 0.0415432;
t11 = 0.0603743;
t12 = 0.177671;
t13 = ((0 <= x & x <= 1/2) .* 1.73205);
t14 = ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597));
t15 = ((1/2 <= x & x <= 1) .* 1.73205);
t16 = ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379));
t8 = (1 + t1).^2;
t1 = 1 ./ t8;
u = -1/4 + (-0.00243052 .* t13 - 0.000809061 .* t14 - 0.00195593 .* t16 - 0.0152378 .* t15) .* t4 + (-0.00043359 .* t13 - 0.000146113 .* t14 - 0.000477063 .* t16 - 0.00319022 .* t15) .* t5 + (-0.00276115 .* t13 - 0.000933166 .* t14 - 0.00314361 .* t16 - 0.0207985 .* t15) .* t6 + t7 .* (0.000172747 .* t13 + 0.0013619 .* t15 + 0.00021141 .* t16 + 5.86775e-05 .* t14) + x .* (t10 .* t4 + t11 .* t6 + t5 .* t9 + t7 .* t8 + t12 + t2 - t3) + t3 + t1;
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 21 Okt. 2020
create a meshgrid of x and t values, X and T. Then
Z = double(subs(u, {x, t}, {X, T})) ;
surfc(X, Y, Z)
5 Kommentare
Walter Roberson
am 26 Okt. 2020
syms x t
t1 = exp(x);
t21 = -5 .* t;
t3 = exp(t21);
t5 = exp((1 + t21));
t4 = ((0 <= t & t <= 1/2) .* 1.73205);
t5 = ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597));
t6 = ((1/2 <= t & t <= 1) .* 1.73205);
t7 = ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
t6 = (1 + t5).^2;
t2 = 1 ./ t6;
t7 = (1 + t3).^2;
t3 = 1 ./ t7;
t8 = -0.00399646;
t9 = 0.00922094;
t10 = 0.0415432;
t11 = 0.0603743;
t12 = 0.177671;
t13 = ((0 <= x & x <= 1/2) .* 1.73205);
t14 = ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597));
t15 = ((1/2 <= x & x <= 1) .* 1.73205);
t16 = ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379));
t8 = (1 + t1).^2;
t1 = 1 ./ t8;
u = -1/4 + (-0.00243052 .* t13 - 0.000809061 .* t14 - 0.00195593 .* t16 - 0.0152378 .* t15) .* t4 + (-0.00043359 .* t13 - 0.000146113 .* t14 - 0.000477063 .* t16 - 0.00319022 .* t15) .* t5 + (-0.00276115 .* t13 - 0.000933166 .* t14 - 0.00314361 .* t16 - 0.0207985 .* t15) .* t6 + t7 .* (0.000172747 .* t13 + 0.0013619 .* t15 + 0.00021141 .* t16 + 5.86775e-05 .* t14) + x .* (t10 .* t4 + t11 .* t6 + t5 .* t9 + t7 .* t8 + t12 + t2 - t3) + t3 + t1;
U = matlabFunction(u);
xvec = 0:0.1:1;
tvec = 0:0.1:2;
[X,T] = meshgrid(xvec, tvec);
Z = U(X,T);
surf(X, T, Z)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Assumptions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!