Image smoothing & sharpening of a particular region in an image
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to apply image smoothing & sharpening to only a particular region of an image?
I'm supposed to take a corrupted and noisy image. Select a particular region of interest. Then apply smoothing and/or sharpening only to that region using MATLAB codes. The code should be generalized i.e i should be able to apply that code to any image. Won't there be problem with selecting the threshold levels for smoothing and/or sharpening for each image, if we are supposed to generalize?
Can anyone give the MATLAB code for the above problem?
0 Kommentare
Akzeptierte Antwort
Image Analyst
am 2 Feb. 2013
I'd just smooth the whole thing and then multiply by the mask defining the regions. There are more efficient methods, but for most situations this will be fine.
blurredImage = conv2(grayImage, ones(15)/15^2, 'same');
grayImage(maskImage) = blurredImage(maskImage);
I don't know what you want to do with thresholds. I guess that might affect how your blurred or sharpened image is created, but you don't say exactly so I can't tell.
3 Kommentare
Image Analyst
am 3 Feb. 2013
Well if you're going to do frequency filtering, then you need to convert to Fourier space, then filter, then you'll have your blurred image. Here's my demo for that:
% 2D FFT Demo
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
format longg;
format compact;
fontSize = 20;
% Change the current folder to the folder of this m-file.
if(~isdeployed)
cd(fileparts(which(mfilename)));
end
% Check that user has the Image Processing Toolbox installed.
hasIPT = license('test', 'image_toolbox');
if ~hasIPT
% User does not have the toolbox installed.
message = sprintf('Sorry, but you do not seem to have the Image Processing Toolbox.\nDo you want to try to continue anyway?');
reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes');
if strcmpi(reply, 'No')
% User said No, so exit.
return;
end
end
% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'cameraman.tif';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% File doesn't exist -- didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
% Read in image.
grayImage = imread('cameraman.tif');
[rows columns numberOfColorChannels] = size(grayImage)
if numberOfColorChannels > 1
grayImage = rgb2gray(grayImage);
end
% Display original grayscale image.
subplot(2, 2, 1);
imshow(grayImage)
title('Original Gray Scale Image', 'FontSize', fontSize)
% Perform 2D FFTs
fftOriginal = fft2(double(grayImage));
shiftedFFT = fftshift(fftOriginal);
subplot(2, 2, 2);
imshow(real(shiftedFFT));
title('Real Part of Spectrum', 'FontSize', fontSize)
subplot(2, 2, 3);
imshow(imag(shiftedFFT));
title('Imaginary Part of Spectrum', 'FontSize', fontSize)
% Display magnitude and phase of 2D FFTs
subplot(2, 2, 4);
imshow(log(abs(shiftedFFT)),[]);
colormap gray
title('Log Magnitude of Spectrum', 'FontSize', fontSize)
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Now convolve with a 2D rect function.
figure;
rectWidth = 10;
rectHeight = 5;
kernel = ones(rectHeight, rectWidth) / (rectHeight * rectWidth);
% Display it
subplot(2, 2, 1);
k = padarray(kernel, [3, 3]); % Just for display.
imshow(k, []);
axis on;
title('Kernel', 'FontSize', fontSize)
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Convolve kernel (box filter) with the image
filteredImage = conv2(double(grayImage), kernel, 'same');
% Display filtered image.
subplot(2, 2, 2);
imshow(filteredImage,[]);
title('Filtered Image', 'FontSize', fontSize)
% Perform 2D FFT on the filtered image to see its spectrum.
% We expect to see a sinc multiplication effect.
% It should look like the original but with a sinc pattern overlaid on it.
fftFiltered = fft2(double(filteredImage));
shiftedFFT = fftshift(fftFiltered);
% Display magnitude of the 2D FFT of the filtered image.
subplot(2, 2, 3);
imshow(log(abs(shiftedFFT)),[]);
colormap gray
title('Log Magnitude of Spectrum - Note sinc multiplication', 'FontSize', fontSize)
Weitere Antworten (1)
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!