Portfolio Optimization with LASSO

17 Ansichten (letzte 30 Tage)
ANDREA MUZI
ANDREA MUZI am 12 Okt. 2020
Beantwortet: ANDREA MUZI am 12 Okt. 2020
I have to find the optimal portfolio adding the "l-1 norm" constraint to the classical mean-variance model. How can i write this optimization in matricial form ?

Antworten (2)

Ameer Hamza
Ameer Hamza am 12 Okt. 2020
Bearbeitet: Ameer Hamza am 12 Okt. 2020
This shows an example for the case of 5 portfolios
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
  4 Kommentare
ANDREA MUZI
ANDREA MUZI am 12 Okt. 2020
equal to eta
Ameer Hamza
Ameer Hamza am 12 Okt. 2020
Then the code in my answer satisfies all the constraints. You can verify
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
Results
>> mu*sol % output is eta
ans =
0.5000
>> sum(sol) % sum is 1
ans =
1
>> sum(abs(sol)) % sum of absolute values is 1
ans =
1

Melden Sie sich an, um zu kommentieren.


ANDREA MUZI
ANDREA MUZI am 12 Okt. 2020
I thank you but it is not the result I expected; I try to rephrase the question. I found a way to linearize the constraint on the weights norm (photo). Basically I have to find the vector between tmin and tmax, in which tmin penalizes all the weights of the assets, bringing them to zero, except one whose weight will be equal to 1 and tmax, whose value will not penalize any asset

Kategorien

Mehr zu Linear Programming and Mixed-Integer Linear Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by