how to code simple pendulum motion using ode45

22 Ansichten (letzte 30 Tage)
Ashan Cooray
Ashan Cooray am 4 Okt. 2020
Kommentiert: Sam Chak am 14 Jun. 2022
how to code simple pendulum motion (displacement vs time) using ode45

Akzeptierte Antwort

Ameer Hamza
Ameer Hamza am 4 Okt. 2020
The equation of simple pendulum is , which can be converted to two first order ODEs
and then using ode45 like this
theta_ic = [0.5; 0]; % initial conditions: theta(t=0)=0.5; dtheta(t=0)=0.
tspan = [0 10];
[t, theta] = ode45(@odeFun, tspan, theta_ic);
plot(t, theta);
legend({'$\theta$', '$\dot{\theta}$'}, ...
'Location', 'best', ...
'Interpreter', 'latex', ...
'FontSize', 16)
function dtheta = odeFun(t, theta)
g = 9.8;
l = 1;
% theta(1) = theta, theta(2) = dtheta
dtheta = zeros(2, 1);
dtheta(1) = theta(2);
dtheta(2) = -g/l*theta(1);
end
  4 Kommentare
Raphaël Candelier
Raphaël Candelier am 14 Jun. 2022
Isn't there a sin() function missing in the solution ?
Sam Chak
Sam Chak am 14 Jun. 2022
Yes, @Raphaël Candelier, you're right. However, at 0.5 rad or 28.65°, the difference is generally not noticeable at the beginning.
0.5 - sin(0.5)
ans =
0.020574461395797
fv1 = @(t, x, y) y;
fv2 = @(t, x, y) - (9.8/1)*sin(x);
opt = odeset('RelTol', 1e-4, 'AbsTol', 1e-6);
[t, v] = ode45(@(t, x) ([fv1(t, x(1), x(2)); fv2(t, x(1), x(2))]), [0 10], [0.5 0], opt);
plot(t, v, 'linewidth', 1.5)
At 10 seconds, you should be able notice the slight difference in phase.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by