solving 2nd order nonlinear ode Numeric solution by using ode45

5 Ansichten (letzte 30 Tage)
the eqution
d^2u/dt -k(1-u^2)du/dt+au = 0
initial condition
u(0)=2 (dimensionless); du/dt (0)=0
question
(a) With 𝑘𝑘 = 1.0 s-1, determine the value of 𝑎𝑎 that would give a heart rate of 1.25 beats/second and Graphically display 𝑢𝑢(t) for this value of 𝑎𝑎 and 0 ≤ t≤ 5 𝑠𝑠 . (25 points).
(b) Graphically display 𝑢𝑢(t) for your chosen values 𝑘𝑘 and 𝑎𝑎 and 0 ≤ t ≤ 5 𝑠𝑠 . Interpret the results.

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 4 Okt. 2020
This is the basic structure for solving the ode.
u0 = 2;
v0 = 0;
tspan = [0 5];
k = 1;
a = 25;
[t,U] = ode45(@odefn, tspan, [u0 v0],[],k,a);
u = U(:,1);
v = U(:,2);
plot(t,u),grid
xlabel('t'),ylabel('u')
function dUdt = odefn(~,U,k,a)
u = U(1);
v = U(2); % v = du/dt
dvdt = k*(1-u^2)*v - a*u;
dUdt = [v;
dvdt];
end
You could investigate fzero to get the value of k that gives 1.25 beats/sec, or adjust it manually (as I did here to get an approximate value).
  4 Kommentare

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by