solving 2nd order nonlinear ode Numeric solution by using ode45
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Aseel Alamri
am 4 Okt. 2020
Kommentiert: Alan Stevens
am 4 Okt. 2020
the eqution
d^2u/dt -k(1-u^2)du/dt+au = 0
initial condition
u(0)=2 (dimensionless); du/dt (0)=0
question
(a) With 𝑘𝑘 = 1.0 s-1, determine the value of 𝑎𝑎 that would give a heart rate of 1.25 beats/second and Graphically display 𝑢𝑢(t) for this value of 𝑎𝑎 and 0 ≤ t≤ 5 𝑠𝑠 . (25 points).
(b) Graphically display 𝑢𝑢(t) for your chosen values 𝑘𝑘 and 𝑎𝑎 and 0 ≤ t ≤ 5 𝑠𝑠 . Interpret the results.
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 4 Okt. 2020
This is the basic structure for solving the ode.
u0 = 2;
v0 = 0;
tspan = [0 5];
k = 1;
a = 25;
[t,U] = ode45(@odefn, tspan, [u0 v0],[],k,a);
u = U(:,1);
v = U(:,2);
plot(t,u),grid
xlabel('t'),ylabel('u')
function dUdt = odefn(~,U,k,a)
u = U(1);
v = U(2); % v = du/dt
dvdt = k*(1-u^2)*v - a*u;
dUdt = [v;
dvdt];
end
You could investigate fzero to get the value of k that gives 1.25 beats/sec, or adjust it manually (as I did here to get an approximate value).
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
